skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Williams, Terrie M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Understanding animal movement is at the core of ecology, evolution and conservation science. Big data approaches for animal tracking have facilitated impactful synthesis research on spatial biology and behavior in ecologically important and human-impacted regions. Similarly, databases of animal traits (e.g. body size, limb length, locomotion method, lifespan) have been used for a wide range of comparative questions, with emerging data being shared at the level of individuals and populations. Here, we argue that the proliferation of both types of publicly available data creates exciting opportunities to unlock new avenues of research, such as spatial planning and ecological forecasting. We assessed the feasibility of combining animal tracking and trait databases to develop and test hypotheses across geographic, temporal and biological allometric scales. We identified multiple research questions addressing performance and distribution constraints that could be answered by integrating trait and tracking data. For example, how do physiological (e.g. metabolic rates) and biomechanical traits (e.g. limb length, locomotion form) influence migration distances? We illustrate the potential of our framework with three case studies that effectively integrate trait and tracking data for comparative research. An important challenge ahead is the lack of taxonomic and spatial overlap in trait and tracking databases. We identify critical next steps for future integration of tracking and trait databases, with the most impactful being open and interlinked individual-level data. Coordinated efforts to combine trait and tracking databases will accelerate global ecological and evolutionary insights and inform conservation and management decisions in our changing world. 
    more » « less
    Free, publicly-accessible full text available February 15, 2026
  2. Abstract Reinvasion of the oceans beginning 10–60 million years ago by ancient mammals instigated one of the most remarkable metabolic transitions across evolutionary time. A consequence of marine living, especially in colder waters, has been a 1.4–2.9-fold increase in resting metabolic rate (RMR) for otters, pinnipeds, and cetaceans over predicted levels for terrestrial mammals of similar body mass. Notably, the greatest metabolic elevation occurred in the smallest marine mammals, suggesting an underlying thermal causative mechanism. Superimposed on these resting costs are the metabolic demands of locomotion. Collectively termed the field metabolic rate (FMR), such active costs consistently approach three times the resting rates of individuals regardless of locomotor style, species, foraging patterns, habitat, or geographic location. In wild non-reproducing mammals, the FMR/RMR ratio averages 2.6–2.8 for both terrestrial and marine species, with the latter group maintaining larger absolute daily metabolic rates supported by comparatively higher food ingestion rates. Interestingly, the limit for habitual (multi-day), sustained maximal energy expenditure in human endurance athletes averages <3.0 times resting metabolic levels, with a notable exception in Tour de France cyclists. Importantly, both athletes and wild mammals seem similarly constrained; that is, by the ability to process enough calories in a day to support exceptional metabolic performance. 
    more » « less
  3. Elephant seals sleep 2 hours a day while diving for months at sea, rivaling the record for the least sleep among mammals. 
    more » « less
  4. Abstract Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g., basal, resting, field, and maximally active). The scaling of metabolism is usually highly correlated with the scaling of many life-history traits, behaviors, physiological variables, and cellular/molecular properties, making determination of the causation of this pattern challenging. For across-species comparisons of resting and locomoting animals (but less so for across populations or during ontogeny), the mechanisms at the physiological and cellular level are becoming clear. Lower mass-specific metabolic rates of larger species at rest are due to (a) lower contents of expensive tissues (brains, liver, and kidneys), and (b) slower ion leak across membranes at least partially due to membrane composition, with lower ion pump ATPase activities. Lower mass-specific costs of larger species during locomotion are due to lower costs for lower-frequency muscle activity, with slower myosin and Ca++ ATPase activities, and likely more elastic energy storage. The evolutionary explanation(s) for hypometric scaling remain(s) highly controversial. One subset of evolutionary hypotheses relies on constraints on larger animals due to changes in geometry with size; for example, lower surface-to-volume ratios of exchange surfaces may constrain nutrient or heat exchange, or lower cross-sectional areas of muscles and tendons relative to body mass ratios would make larger animals more fragile without compensation. Another subset of hypotheses suggests that hypometric scaling arises from biotic interactions and correlated selection, with larger animals experiencing less selection for mass-specific growth or neurolocomotor performance. An additional third type of explanation comes from population genetics. Larger animals with their lower effective population sizes and subsequent less effective selection relative to drift may have more deleterious mutations, reducing maximal performance and metabolic rates. Resolving the evolutionary explanation for the hypometric scaling of metabolism and associated variables is a major challenge for organismal and evolutionary biology. To aid progress, we identify some variation in terminology use that has impeded cross-field conversations on scaling. We also suggest that promising directions for the field to move forward include (1) studies examining the linkages between ontogenetic, population-level, and cross-species allometries; (2) studies linking scaling to ecological or phylogenetic context; (3) studies that consider multiple, possibly interacting hypotheses; and (4) obtaining better field data for metabolic rates and the life history correlates of metabolic rate such as lifespan, growth rate, and reproduction. 
    more » « less
  5. In this paper, we introduce a creative pipeline to incorporate physiological and behavioral data from contemporary marine mammal research into data-driven animations, leveraging functionality from industry tools and custom scripts to promote scientific insights, public awareness, and conservation outcomes. Our framework can flexibly transform data describing animals’ orientation, position, heart rate, and swimming stroke rate to control the position, rotation, and behavior of 3D models, to render animations, and to drive data sonification. Additionally, we explore the challenges of unifying disparate datasets gathered by an interdisciplinary team of researchers, and outline our design process for creating meaningful data visualization tools and animations. As part of our pipeline, we clean and process raw acceleration and electrophysiological signals to expedite complex multi-stream data analysis and the identification of critical foraging and escape behaviors. We provide details about four animation projects illustrating marine mammal datasets. These animations, commissioned by scientists to achieve outreach and conservation outcomes, have successfully increased the reach and engagement of the scientific projects they describe. These impactful visualizations help scientists identify behavioral responses to disturbance, increase public awareness of human-caused disturbance, and help build momentum for targeted conservation efforts backed by scientific evidence. 
    more » « less