skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilson, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The hydrogen isotopic composition of lake water (δ2Hlw) contains hydrologic information and can be used as a recorder of lake water hydrology, including the extent of evaporation of the lake system. Initial studies indicate that the hydrogen isotopes of highly branched isoprenoids (δ2HHBI), synthesized by lake diatoms and preserved in lake sediments are a promising proxy for constraining past δ2Hlw values that are free from terrestrial in- fluences. However, there are many aspects of this proxy, including the seasonality of HBI production, that are unknown and need to be addressed more fully before the proxy can by widely applied. To determine when HBIs are produced throughout the year, and whether there are seasonal biases in δ2Hlw reconstructions, we deployed two sediment traps at Brown’s Lake, in northeastern Ohio. We present HBI concentrations, δ2HHBI values, HBI carbon isotopes and bulk sediment carbon isotopes from sediment traps collected monthly for 26 months to investigate seasonality of HBIs. We observed HBIs in each of the monthly sediment traps throughout the study interval with an increase in HBI concentration during September and October, suggesting that HBIs are made throughout the year with greater production during fall. We calculated the difference between δ2HHBI and δ2Hlw values (ε2HHBI/lw) and observe a range in ε2HHBI/lw values of up to 64‰, which we speculate is related to changes in the diatom communities that synthesize HBIs throughout the year and between different years. Different diatom communities may have different biosynthetic pathways or metabolisms that result in isotope effects. This study is the first that examines the seasonality of HBIs in lake sediments and provides framework for interpreting the seasonality of hydroclimate records generated from δ2HHBI values in temperate eutrophic lakes. 
    more » « less
    Free, publicly-accessible full text available September 13, 2026
  2. Diatom-derived highly branched isoprenoid lipids (HBIs) are found extensively in marine sediments, but to date are only reported in a few lacustrine sediments. To expand on prior lake studies, we collected lake surface sediment samples, water samples, and filtered photic zone water from 50 lakes from the Great Plains to the northeastern United States. Samples were collected in May and June and a few sites were revisited in September and October. Studied lakes vary in climate, water chemistry (e.g., pH, salinity, alkalinity), size, and trophic states. They also vary in their diatom species compositions with 344 diatom taxa reported. We characterized HBI assemblages in each lake and found 11 different HBI compounds including one C20:0 HBI, five C20:1 HBI isomers, C21:0 HBI, C25:2 HBI, two C25:3 HBIs, and C25:4 HBI. C20:0 HBI was present in all but two lakes and was often the most abundant HBI present. HBIs were also detected in nearly all the water filter samples indicating they are produced in the photic zone. C20:0 HBI was present in all freshwater lakes, but not present or at very low con- centration in the highest salinity lakes, which were dominated by C21:0 HBI and C25 HBIs. Many of the lakes were dominated by diatom genera and species that are not known to be HBI-producing genera, suggesting there are unrecognized HBI-producing diatom taxa. This inventory, illustrating the widespread presence and diversity of HBIs from lakes across large differences in water chemistries and climate, further suggests that HBIs may be useful diatom biomarkers for paleoclimate applications. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026
  3. Fedin, V P (Ed.)
    The tuning of the luminescent properties of PtII complexes for possible use in organic light-emitting diodes (OLEDs) and sensing applications is commonly achieved by altering the electronic properties of the ligands. Our group recently demonstrated that the trifluoropropynyl ligand is strongly electron-withdrawing and possibly useful for blueshifting emission. Herein, we report the synthesis of two complexes of this trifluoropropynyl ligand, namely PtLC2CF3 and PtLFC2CF3 (L = 1,3-di(2-pyridyl)benzene; LF = 4,6-difluoro-1,3-di(2-pyridyl)benzene). The PtLC2CF3 complex crystallized in the monoclinic space group P21/n with Z = 4. The PtLFC2CF3 complex crystalized in the triclinic space group P-1 with Z = 2. Changing the tridentate ligand from L to LF resulted in a change in the packing structure, with the latter showing a metallophilic interaction (Pt-Pt distance = 3.3341(3) Å). The solution photophysics of the trifluoropropynyl complexes is compared with that of the corresponding Cl complexes, PtLCl and PtLFCl. Replacement of the chloro ligand with the trifluoropropynyl ligand blueshifted the monomer emission by less than 5 nm but blueshifted the excimer emission peaks by 15–20 nm. The complexes of the trifluoropropynyl ligand also favor the excimer emission more than the complexes of the chloro ligand. The excimer emission is quenched by dissolved oxygen significantly more than the corresponding monomer emission. The excimer emission and monomer emission are well separated, and the ratio of monomer to excimer emission is strongly dependent on oxygen concentration. 
    more » « less