- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
03000010000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Wong, Lawson LS (4)
-
Zhao, Linfeng (3)
-
Zhu, Xupeng (2)
-
Amato, Christopher (1)
-
Howell, Owen (1)
-
Jiang, Huaizu (1)
-
Kong, Lingzhi (1)
-
Li, Hongyu (1)
-
Padir, Taskin (1)
-
Park, Jung Yeon (1)
-
Walters, Robin (1)
-
Waltes, Robin (1)
-
Xu, Chengguang (1)
-
Zhang, Zhewen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 13, 2025
-
Zhao, Linfeng ; Li, Hongyu ; Padir, Taskin ; Jiang, Huaizu ; Wong, Lawson LS ( , IEEE Robotics and Automation Letters)Free, publicly-accessible full text available April 1, 2025
-
Zhao, Linfeng ; Howell, Owen ; Zhu, Xupeng ; Park, Jung Yeon ; Zhang, Zhewen ; Walters, Robin ; Wong, Lawson LS ( , Workshop on the Algorithmic Foundations of Robotics)
-
Zhao, Linfeng ; Zhu, Xupeng ; Kong, Lingzhi ; Waltes, Robin ; Wong, Lawson LS ( , International Conference on Learning Representations)To achieve this, we draw inspiration from equivariant convolution networks and model the path planning problem as a set of signals over grids. We demonstrate that value iteration can be treated as a linear equivariant operator, which is effectively a steerable convolution. Building upon Value Iteration Networks (VIN), we propose a new Symmetric Planning (SymPlan) framework that incorporates rotation and reflection symmetry using steerable convolution networks. We evaluate our approach on four tasks: 2D navigation, visual navigation, 2 degrees of freedom (2-DOF) configuration space manipulation, and 2-DOF workspace manipulation. Our experimental results show that our symmetric planning algorithms significantly improve training efficiency and generalization performance compared to non-equivariant baselines, including VINs and GPPN.more » « less