skip to main content

Search for: All records

Creators/Authors contains: "Wu, Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb 4 , arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb 4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract Electronic correlation is of fundamental importance to high temperature superconductivity. While the low energy electronic states in cuprates are dominantly affected by correlation effects across the phase diagram, observation of correlation-driven changes in fermiology amongst the iron-based superconductors remains rare. Here we present experimental evidence for a correlation-driven reconstruction of the Fermi surface tuned independently by two orthogonal axes of temperature and Se/Te ratio in the iron chalcogenide family FeTe 1− x Se x . We demonstrate that this reconstruction is driven by the de-hybridization of a strongly renormalized d x y orbital with the remaining itinerant iron 3 d orbitals in the emergence of an orbital-selective Mott phase. Our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase into an orbital-selective Mott phase in d x y as Se concentration is reduced.
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract

    Using quantum Monte Carlo, exact diagonalization, and perturbation theory, we study the spectrum of theS = 1/2 antiferromagnetic Heisenberg trimer chain by varying the ratiog = J2/J1of the intertrimer and intratrimer coupling strengths. The doublet ground states of trimers form effective interactingS = 1/2 degrees of freedom described by a Heisenberg chain. Therefore, the conventional two-spinon continuum of width ∝ J1wheng = 1 evolves into to a similar continuum of width ∝ J2wheng → 0. The intermediate-energy and high-energy modes are termeddoublonsandquartonswhich fractionalize with increasinggto form the conventional spinon continuum. In particular, atg ≈ 0.716, the gap between the low-energy spinon branch and the high-energy band with mixed doublons, quartons, and spinons closes. These features should be observable in inelastic neutron scattering experiments if a quasi-one-dimensional quantum magnet with the linear trimer structure andJ2 < J1can be identified. Our results may open a window for exploring the high-energy fractional excitations.

  4. Pancreatic cancer is usually asymptomatic in the early stages; the 5-y survival rate is around 9%; and there is a lack of effective treatment. Here we show that SSEA-4 is more expressed in all pancreatic cancer cell lines examined but not detectable in normal pancreatic cells; and high expression of SSEA-4 or the key enzymes B3GALT5 + ST3GAL2 associated with SSEA-4 biosynthesis significantly lowers the overall survival rate. To evaluate potential new treatments for pancreatic cancer, homogeneous antibodies with a well-defined Fc glycan for optimal effector functions and CAR-T cells with scFv construct designed to target SSEA-4 were shown highly effective against pancreatic cancer in vitro and in vivo. This was further supported by the finding that a subpopulation of natural killer (NK) cells isolated by the homogeneous antibody exhibited enhancement in cancer-cell killing activity compared to the unseparated NK cells. These results indicate that targeting SSEA-4 by homologous antibodies or CAR-T strategies can effectively inhibit cancer growth, suggesting SSEA-4 as a potential immunotherapy target for treating pancreatic disease.
  5. null (Ed.)