skip to main content

Search for: All records

Creators/Authors contains: "Wu, Wenxuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The recent introduction of Unified Virtual Memory (UVM) in GPUs offers a new programming model that allows GPUs and CPUs to share the same virtual memory space, which shifts the complex memory management from programmers to GPU driver/ hardware and enables kernel execution even when memory is oversubscribed. Meanwhile, UVM may also incur considerable performance overhead due to tracking and data migration along with special handling of page faults and page table walk. As UVM is attracting significant attention from the research community to develop innovative solutions to these problems, in this paper, we propose a comprehensive UVM benchmark suite named UVMBench to facilitate future research on this important topic. The proposed UVMBench consists of 32 representative benchmarks from a wide range of application domains. The suite also features unified programming implementation and diverse memory access patterns across benchmarks, thus allowing thorough evaluation and comparison with current state-of-the-art. A set of experiments have been conducted on real GPUs to verify and analyze the benchmark suite behaviors under various scenarios. 
    more » « less
  2. null (Ed.)
    Recently, several networks that operate directly on point clouds have been proposed. There is significant utility in understanding their mechanisms to classify point clouds, which can potentially help diagnosing these networks and designing better architectures. In this paper, we propose a novel approach to visualize features important to the point cloud classifiers. Our approach is based on smoothing curved areas on a point cloud. After prominent features were smoothed, the resulting point cloud can be evaluated on the network to assess whether the feature is important to the classifier. A technical contribution of the paper is an approximated curvature smoothing algorithm, which can smoothly transition from the original point cloud to one of constant curvature, such as a uniform sphere. Based on the smoothing algorithm, we propose PCI-GOS (Point Cloud Integrated-Gradients Optimized Saliency), a visualization technique that can automatically find the minimal saliency map that covers the most important features on a shape. Experiment results revealed insights into different point cloud classifiers. The code is available at 
    more » « less
  3. null (Ed.)
    We propose a novel end-to-end deep scene flow model, called PointPWC-Net, that directly processes 3D point cloud scenes with large motions in a coarse-to-fine fashion. Flow computed at the coarse level is upsampled and warped to a finer level, enabling the algorithm to accommodate for large motion without a prohibitive search space. We introduce novel cost volume, upsampling, and warping layers to efficiently handle 3D point cloud data. Unlike traditional cost volumes that require exhaustively computing all the cost values on a high-dimensional grid, our point-based formulation discretizes the cost volume onto input 3D points, and a PointConv operation efficiently computes convolutions on the cost volume. Experiment results on FlyingThings3D and KITTI outperform the state-of-the-art by a large margin. We further explore novel self-supervised losses to train our model and achieve comparable results to state-of-the-art trained with supervised loss. Without any fine-tuning, our method also shows great generalization ability on the KITTI Scene Flow 2015 dataset, outperforming all previous methods. The code is released at 
    more » « less
  4. Unlike images which are represented in regular dense grids, 3D point clouds are irregular and unordered, hence applying convolution on them can be difficult. In this paper, we extend the dynamic filter to a new convolution operation, named PointConv. PointConv can be applied on point clouds to build deep convolutional networks. We treat convolution kernels as nonlinear functions of the local coordinates of 3D points comprised of weight and density functions. With respect to a given point, the weight functions are learned with multi-layer perceptron networks and the density functions through kernel density estimation. A novel reformulation is proposed for efficiently computing the weight functions, which allowed us to dramatically scale up the network and significantly improve its performance. The learned convolution kernel can be used to compute translation-invariant and permutation-invariant convolution on any point set in the 3D space. Besides, PointConv can also be used as deconvolution operators to propagate features from a subsampled point cloud back to its original resolution. Experiments on ModelNet40, ShapeNet, and ScanNet show that deep convolutional neural networks built on PointConv are able to achieve state-of-the-art on challenging semantic segmentation benchmarks on 3D point clouds. Besides, our experiments converting CIFAR-10 into a point cloud showed that networks built on PointConv can match the performance of convolutional networks in 2D images of a similar structure. 
    more » « less
  5. Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies. Triboelectric nanogenerators (TENGs) utilizing soft polymers with embedded additives and engineered dielectric properties emerge as ideal candidates for such applications. However, the use of solid filler materials in the state-of-the-art TENGs limits the devices' mechanical deformability and long-term durability. The current structural design for TENGs faces the dilemma where the enhanced dielectric constant of the TENG's contact layer leads to an undesirable saturation of the surface charge density. Here, we present a novel scheme to address the above issues, by exploring a liquid-metal-inclusion based TENG (LMI-TENG) where inherently deformable core–shell LMIs are incorporated into wearable high-dielectric-constant polymers. Through a holistic approach integrating theoretical and experimental efforts, we identified the parameter space for designing an LMI-TENG with co-optimized output and mechanical deformability. As a proof of concept, we demonstrated an LMI-TENG based wireless media control system for a self-powered user interface. The device architecture and design scheme presented here provide a promising solution towards the realization of self-powered human-integrated technologies. 
    more » « less