skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wu, Zhenghui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To achieve high detectivity in infrared detectors, it is critical to reduce the device noise. However, for non-crystalline semiconductors, an essential framework is missing to understand and predict the effects of disorder on the dark current. This report presents experimental and modeling studies on the noise current in exemplar organic bulk heterojunction photodiodes, with 10 donor–acceptor combinations spanning wavelength between 800 and 1600 nm. A significant reduction of the noise and higher detectivity were found in devices using non-fullerene acceptors (NFAs) in comparison to those using fullerene derivatives. The low noise in NFA blends was attributed to a sharp drop off in the distribution of bandtail states, as revealed by variable-temperature density-of-states measurements. Taking disorder into account, we developed a general physical model to explain the dependence of thermal noise on the effective bandgap and bandtail spread. The model provides theoretical targets for the maximum detectivity that can be obtained at different detection wavelengths in inherently disordered infrared photodiodes.

     
    more » « less
  2. Abstract

    While only few organic photodiodes have photoresponse past 1 µm, novel shortwave infrared (SWIR) polymers are emerging, and a better understanding of the limiting factors in narrow bandgap devices is critically needed to predict and advance performance. Based on state‐of‐the‐art SWIR bulk heterojunction photodiodes, this work demonstrates a model that accounts for the increasing electric‐field dependence of photocurrent in narrow bandgap materials. This physical model offers an expedient method to pinpoint the origins of efficiency losses, by decoupling the exciton dissociation efficiency and charge collection efficiency in photocurrent–voltage measurements. These results from transient photoconductivity measurements indicate that the main loss is due to poor exciton dissociation, particularly significant in photodiodes with low‐energy charge‐transfer states. Direct measurements of the noise components are analyzed to caution against using assumptions that could lead to an overestimation of detectivity. The devices show a peak detectivity of 5 × 1010Jones with a spectral range up to 1.55 µm. The photodiodes are demonstrated to quantify the ethanol–water content in a mixture within 1% accuracy, conveying the potential of organics to enable economical, scalable detectors for SWIR spectroscopy.

     
    more » « less
  3. Abstract

    This work examines an additive approach that increases dielectric screening to overcome performance challenges in organic shortwave infrared (SWIR) photodiodes. The role of the high‐permittivity additive, camphoric anhydride, in the exciton dissociation and charge collection processes is revealed through measurements of transient photoconductivity and electrochemical impedance. Dielectric screening reduces the exciton binding energy to increase exciton dissociation efficiency and lowers trap‐assisted recombination loss, in the absence of any morphological changes for two polymer variants. In the best devices, the peak internal quantum efficiency at 1100 nm is increased up to 66%, and the photoresponse extends to 1400 nm. The SWIR photodiodes are integrated into a 4 × 4 pixel imager to demonstrate tissue differentiation and estimate the fat‐to‐muscle ratio through noninvasive spectroscopic analysis.

     
    more » « less
  4. Abstract

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub‐picosecond singlet exciton lifetimes are measured in a structurally related series of infrared‐absorbing copolymers that consist of alternating cyclopentadithiophene electron‐rich “push” units and strong electron‐deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC71BM infrared photodetectors is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single‐chain excitons unquenched. The results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.

     
    more » « less
  5. Abstract

    The development of in situ growth methods for the fabrication of high‐quality perovskite single‐crystal thin films (SCTFs) directly on hole‐transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large‐area high‐quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high‐quality large‐size MAPbBr3SCTFs on HTLs is investigated. An optimal “sweet spot” is determined: low interface energy between the precursor solution and substrate, a slow heating rate, and a moderate precursor solution concentration. As a result, the as‐obtained perovskite SCTFs with a thickness of 540 nm achieve a record area to thickness ratio of 1.94 × 104 mm, a record X‐ray diffraction peak full width at half maximum of 0.017°, and an ultralong carrier lifetime of 1552 ns. These characteristics enable the as‐obtained perovskite SCTFs to exhibit a record carrier mobility of 141 cm2V−1s−1and good long‐term structural stability over 360 days.

     
    more » « less