skip to main content


Search for: All records

Creators/Authors contains: "Xiao, Yinshuang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2025
  2. The immense volume of user-generated content on social media provides a rich data source for big data research. Comentioned entities in social media content offer valuable information that can support a broad range of studies, from product market competition to dynamic social network mining and modeling. This paper introduces a new approach that combines named entity recognition (NER) and network modeling to extract and analyze co-mention relationships among entities in the same domain from unstructured social media data. This approach contributes to design for market systems literature because little research has investigated product competition via co-mention networks using large-scale unstructured social media data. In particular, the proposed approach provides designers with a new way to gain insight into market trends and aggregated customer preferences when customer choice data is insufficient. Moreover, our approach can easily support the evolution analysis of co-mention relationships beyond cross-sectional analysis of co-mention networks in a single year due to the abundance of social media data in multiple years. To demonstrate the approach to supporting multi-year product competition analysis, we perform a case study on mining co-mention networks of car models with Twitter data. The result shows that our approach can successfully extract the co-mention relationships of car models in multiple years from 2016 to 2019 from massive Twitter content; and enables us to conduct evolutionary co-mention network analysis with temporal network modeling and descriptive network analysis. The analysis confirmed that the co-mention network is capable of identifying frequently discussed entities and topics, such as car model pairs that often involve in competition and emerging vehicle technologies such as electric vehicles (EV). Furthermore, conducting evolutionary co-mention network analysis provides designers with an efficient way to monitor shifts in customer preferences for car features and to track trends in public discussions such as environmental issues associated with EVs over time. Our approach can be generally applied to other studies on co-mention relationships between entities, such as emerging technologies, cellphones, and political figures. 
    more » « less
  3. Abstract Customer preference modelling has been widely used to aid engineering design decisions on the selection and configuration of design attributes. Recently, network analysis approaches, such as the exponential random graph model (ERGM), have been increasingly used in this field. While the ERGM-based approach has the new capability of modelling the effects of interactions and interdependencies (e.g., social relationships among customers) on customers’ decisions via network structures (e.g., using triangles to model peer influence), existing research can only model customers’ consideration decisions, and it cannot predict individual customer’s choices, as what the traditional utility-based discrete choice models (DCMs) do. However, the ability to make choice predictions is essential to predicting market demand, which forms the basis of decision-based design (DBD). This paper fills this gap by developing a novel ERGM-based approach for choice prediction. This is the first time that a network-based model can explicitly compute the probability of an alternative being chosen from a choice set. Using a large-scale customer-revealed choice database, this research studies the customer preferences estimated from the ERGM-based choice models with and without network structures and evaluates their predictive performance of market demand, benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show that the proposed ERGM-based choice modelling achieves higher accuracy in predicting both individual choice behaviours and market share ranking than the MNL model, which is mathematically equivalent to ERGM when no network structures are included. The insights obtained from this study further extend the DBD framework by allowing explicit modelling of interactions among entities (i.e., customers and products) using network representations. 
    more » « less