Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Decadal variability in the North Atlantic Ocean impacts regional and global climate, yet changes in internal decadal variability under anthropogenic radiative forcing remain largely unexplored. Here we use the Community Earth System Model 2 Large Ensemble under historical and the Shared Socioeconomic Pathway 3-7.0 future radiative forcing scenarios and show that the ensemble spread in northern North Atlantic sea surface temperature (SST) more than doubles during the mid-twenty-first century, highlighting an exceptionally wide range of possible climate states. Furthermore, there are strikingly distinct trajectories in these SSTs, arising from differences in the North Atlantic deep convection among ensemble members starting by 2030. We propose that these are stochastically triggered and subsequently amplified by positive feedbacks involving coupled ocean-atmosphere-sea ice interactions. Freshwater forcing associated with global warming seems necessary for activating these feedbacks, accentuating the impact of external forcing on internal variability. Further investigation on seven additional large ensembles affirms the robustness of our findings. By monitoring these mechanisms in real time and extending dynamical model predictions after positive feedbacks activate, we may achieve skillful long-lead North Atlantic decadal predictions that are effective for multiple decades.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Deep convection in the Indo-Pacific warm pool is vital in driving global atmospheric overturning circulations. Year-to-year variations in the strength and location of warm pool precipitation can lead to significant local and downstream hydroclimatic impacts, including floods and droughts. While the El Niño-Southern Oscillation (ENSO) is recognized as a key factor in modulating interannual precipitation variations in this region, atmospheric internal variability is often as important. Here, through targeted atmospheric model experiments, we identify an intrinsic low-frequency atmospheric mode in the warm pool region during the austral summer, and show that its impact on seasonal rainfall is comparable to ENSO. This mode resembles the horizontal structure of the Madden-Julian Oscillation (MJO), and may play a role in initiating ENSO as stochastic forcing. We show that this mode is not merely an episodic manifestation of MJO events but primarily arises from barotropic energy conversion aided by positive feedback between convection and circulation.more » « less
-
Abstract Climate models suffer from longstanding precipitation biases, much of which has been attributed to their atmospheric component owing to unrealistic parameterizations. Here we investigate precipitation biases in 37 Atmospheric Model Intercomparison Project Phase 6 (AMIP6) models, focusing on the Indo‐Pacific region during boreal summer. These models remain plagued by considerable precipitation biases, especially over regions of strong precipitation. In particular, 22 models overestimate the Asian‐Pacific monsoon precipitation, while 28 models underestimate the southern Indian Ocean Intertropical Convergence Zone precipitation. The inter‐model spread in summer precipitation is decomposed into Empirical Orthogonal Functions (EOFs). The leading EOF mode features an anomalous anticyclone circulation spanning the Indo‐northwest Pacific oceans, which we show is energized by barotropic conversion from the confluence of the background monsoonal westerlies and trade‐wind easterlies. Our results suggest precipitation biases in atmospheric models, though caused by unrealistic parameterizations, are organized by dynamical feedbacks of the mean flow.more » « less
-
In the boreal spring of 2023, an extreme coastal El Niño struck the coastal regions of Peru and Ecuador, causing devastating rainfalls, flooding, and record dengue outbreaks. Observations and ocean model experiments reveal that northerly alongshore winds and westerly wind anomalies in the eastern equatorial Pacific, initially associated with a record-strong Madden-Julian Oscillation and cyclonic disturbance off Peru in March, drove the coastal warming through suppressed coastal upwelling and downwelling Kelvin waves. Atmospheric model simulations indicate that the coastal warming in turn favors the observed wind anomalies over the far eastern tropical Pacific by triggering atmospheric deep convection. This implies a positive feedback between the coastal warming and the winds, which further amplifies the coastal warming. In May, the seasonal background cooling precludes deep convection and the coastal Bjerknes feedback, leading to the weakening of the coastal El Niño. This coastal El Niño is rare but predictable at 1 month lead, which is useful to protect lives and properties.more » « less
-
Abstract Positive feedbacks in climate processes can make it difficult to identify the primary drivers of climate phenomena. Some recent global climate model (GCM) studies address this issue by controlling the wind stress felt by the surface ocean such that the atmosphere and ocean become mechanically decoupled. Most mechanical decoupling studies have chosen to override wind stress with an annual climatology. In this study we introduce an alternative method of interannually varying overriding which maintains higher frequency momentum forcing of the surface ocean. Using a GCM (NCAR CESM1), we then assess the size of the biases associated with these two methods of overriding by comparing with a freely evolving control integration. We find that overriding with a climatology creates sea surface temperature (SST) biases throughout the global oceans on the order of ±1°C. This is substantially larger than the biases introduced by interannually varying overriding, especially in the tropical Pacific. We attribute the climatological overriding SST biases to a lack of synoptic and subseasonal variability, which causes the mixed layer to be too shallow throughout the global surface ocean. This shoaling of the mixed layer reduces the effective heat capacity of the surface ocean such that SST biases excite atmospheric feedbacks. These results have implications for the reinterpretation of past climatological wind stress overriding studies: past climate signals attributed to momentum coupling may in fact be spurious responses to SST biases.more » « less
-
Abstract Since the early 2010s, anthropogenic aerosols have started decreasing in East Asia (EA) while have continued to increase in South Asia (SA). Yet the climate impacts of this Asian aerosol dipole (AAD) pattern remain largely unknown. Using a state-of-the-art climate model, we demonstrate that the climate response is distinctly different between the SA aerosol increases and EA aerosol decreases. The SA aerosol increases lead to ~2.7 times stronger land summer precipitation change within the forced regions than the EA aerosol decreases. Contrastingly, the SA aerosol increases, within the tropical monsoon regime, produce weak and tropically confined responses, while the EA aerosol decreases yield a pronounced northern hemisphere warming aided by extratropical mean westerly and positive air-sea feedbacks over the western North Pacific. By scaling the observed instantaneous shortwave radiative forcing, we reveal that the recent AAD induces a pronounced northern hemisphere extratropical (beyond 30°N) warming (0.024 ± 0.010 °C decade−1), particularly over Europe (0.049 ± 0.009 °C decade−1). These findings highlight the importance of the pattern effect of forcings in driving global climate and have important implications for decadal prediction.more » « less
-
Most state-of-art models project a reduced equatorial Pacific east-west temperature gradient and a weakened Walker circulation under global warming. However, the causes of this robust projection remain elusive. Here, we devise a series of slab ocean model experiments to diagnostically decompose the global warming response into the contributions from the direct carbon dioxide (CO2) forcing, sea ice changes, and regional ocean heat uptake. The CO2forcing dominates the Walker circulation slowdown through enhancing the tropical tropospheric stability. Antarctic sea ice changes and local ocean heat release are the dominant drivers for reduced zonal temperature gradient over the equatorial Pacific, while the Southern Ocean heat uptake opposes this change. Corroborating our model experiments, multimodel analysis shows that the models with greater Southern Ocean heat uptake exhibit less reduction in the temperature gradient and less weakening of the Walker circulation. Therefore, constraining the tropical Pacific projection requires a better insight into Southern Ocean processes.more » « less
-
Turbulence-enhanced mixing of upper ocean heat allows interaction between the tropical atmosphere and cold water masses that impact climate at higher latitudes thereby regulating air–sea coupling and poleward heat transport. Tropical cyclones (TCs) can drastically enhance upper ocean mixing and generate powerful near-inertial internal waves (NIWs) that propagate down into the deep ocean. Globally, downward mixing of heat during TC passage causes warming in the seasonal thermocline and pumps 0.15 to 0.6 PW of heat into the unventilated ocean. The final distribution of excess heat contributed by TCs is needed to understand subsequent consequences for climate; however, it is not well constrained by current observations. Notably, whether or not excess heat supplied by TCs penetrates deep enough to be kept in the ocean beyond the winter season is a matter of debate. Here, we show that NIWs generated by TCs drive thermocline mixing weeks after TC passage and thus greatly deepen the extent of downward heat transfer induced by TCs. Microstructure measurements of the turbulent diffusivity ( κ ) and turbulent heat flux ( J q ) in the Western Pacific before and after the passage of three TCs indicate that mean thermocline values of κ and J q increased by factors of 2 to 7 and 2 to 4 (95% confidence level), respectively, after TC passage. Excess mixing is shown to be associated with the vertical shear of NIWs, demonstrating that studies of TC–climate interactions ought to represent NIWs and their mixing to accurately capture TC effects on background ocean stratification and climate.more » « less