Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available August 1, 2025
-
Abstract We consider variants of a recently developed Newton-CG algorithm for nonconvex problems (Royer, C. W. & Wright, S. J. (2018) Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477) in which inexact estimates of the gradient and the Hessian information are used for various steps. Under certain conditions on the inexactness measures, we derive iteration complexity bounds for achieving $$\epsilon $$-approximate second-order optimality that match best-known lower bounds. Our inexactness condition on the gradient is adaptive, allowing for crude accuracy in regions with large gradients. We describe two variants of our approach, one in which the step size along the computed search direction is chosen adaptively, and another in which the step size is pre-defined. To obtain second-order optimality, our algorithms will make use of a negative curvature direction on some steps. These directions can be obtained, with high probability, using the randomized Lanczos algorithm. In this sense, all of our results hold with high probability over the run of the algorithm. We evaluate the performance of our proposed algorithms empirically on several machine learning models. Our approach is a first attempt to introduce inexact Hessian and/or gradient information into the Newton-CG algorithm of Royer & Wright (2018, Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477).more » « less