Solar flare ribbon fronts appear ahead of the bright structures that normally characterize solar flares, and can persist for an extended period of time in spatially localized patches before transitioning to “regular” bright ribbons. They likely represent the initial onset of flare energy deposition into the chromosphere. Chromospheric spectra (e.g., He
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract i 10830 Å and the Mgii near-UV lines) from ribbon fronts exhibit properties rather different to typical flare behavior. In prior numerical modeling efforts we were unable to reproduce the long lifetime of ribbon fronts. Here we present a series of numerical experiments that are rather simple but which have important implications. We inject a very low flux of nonthermal electrons (F = 5 × 108erg s−1cm−2) into the chromosphere for 100 s before ramping up to standard flare energy fluxes (F = 1010−11erg s−1cm−2). Synthetic spectra not only sustained their ribbon-front-like properties for significantly longer: in the case of harder nonthermal electron spectra, the ribbon front behavior persisted for the entirety of this weak-heating phase. Lengthening or shortening the duration of the weak-heating phase commensurately lengthened or shortened the ribbon front lifetimes. Ribbon fronts transitioned to regular bright ribbons when the upper chromosphere became sufficiently hot and dense, which happened faster for softer nonthermal electron spectra. Thus, the lifetime of flare ribbon fronts are a direct measure of the duration over which a relatively low flux of high-energy electrons precipitates to the chromosphere prior to the bombardment of a much larger energy flux. -
Abstract We present observations and analysis of an eruptive M1.5 flare (SOL2014-08-01T18:13) in NOAA active region (AR) 12127, characterized by three flare ribbons, a confined filament between ribbons, and rotating sunspot motions as observed by the Solar Dynamics Observatory. The potential field extrapolation model shows a magnetic topology involving two intersecting quasi-separatrix layers (QSLs) forming a hyperbolic flux tube (HFT), which constitutes the fishbone structure for the three-ribbon flare. Two of the three ribbons show separation from each other, and the third ribbon is rather stationary at the QSL footpoints. The nonlinear force-free field extrapolation model implies the presence of a magnetic flux rope (MFR) structure between the two separating ribbons, which was unclear in the observation. This suggests that the standard reconnection scenario for eruptive flares applies to the two ribbons, and the QSL reconnection for the third ribbon. We find rotational flows around the sunspot, which may have caused the eruption by weakening the downward magnetic tension of the MFR. The confined filament is located in the region of relatively strong strapping field. The HFT topology and the accumulation of reconnected magnetic flux in the HFT may play a role in holding it from eruption. This eruption scenario differs from the one typically known for circular ribbon flares, which is mainly driven by a successful inside-out eruption of filaments. Our results demonstrate the diversity of solar magnetic eruption paths that arises from the complexity of the magnetic configuration.
-
The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically increases the correlation length, in support of our recent hypothesis [
] that coupling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract doublon-hole correlation length.108 ,144434 (2023 )2469-9950 10.1103/PhysRevB.108.144434 -
Free, publicly-accessible full text available March 1, 2025
-
Abstract Solar flares are explosions on the Sun. They happen when energy stored in magnetic fields around solar active regions (ARs) is suddenly released. Solar flares and accompanied coronal mass ejections are sources of space weather, which negatively affects a variety of technologies at or near Earth, ranging from blocking high-frequency radio waves used for radio communication to degrading power grid operations. Monitoring and providing early and accurate prediction of solar flares is therefore crucial for preparedness and disaster risk management. In this article, we present a transformer-based framework, named SolarFlareNet, for predicting whether an AR would produce a
-class flare within the next 24 to 72 h. We consider three$$\gamma$$ classes, namely the$$\gamma$$ M5.0 class, the$$\ge$$ M class and the$$\ge$$ C class, and build three transformers separately, each corresponding to a$$\ge$$ class. Each transformer is used to make predictions of its corresponding$$\gamma$$ -class flares. The crux of our approach is to model data samples in an AR as time series and to use transformers to capture the temporal dynamics of the data samples. Each data sample consists of magnetic parameters taken from Space-weather HMI Active Region Patches (SHARP) and related data products. We survey flare events that occurred from May 2010 to December 2022 using the Geostationary Operational Environmental Satellite X-ray flare catalogs provided by the National Centers for Environmental Information (NCEI), and build a database of flares with identified ARs in the NCEI flare catalogs. This flare database is used to construct labels of the data samples suitable for machine learning. We further extend the deterministic approach to a calibration-based probabilistic forecasting method. The SolarFlareNet system is fully operational and is capable of making near real-time predictions of solar flares on the Web.$$\gamma$$ -
Free, publicly-accessible full text available November 3, 2024
-
Abstract Here, we present the study of a compact emission source during an X1.3 flare on 2022 March 30. Within a ∼41 s period (17:34:48 UT to 17:35:29 UT), Interface Region Imaging Spectrograph observations show spectral lines of Mg
ii , Cii , and Siiv with extremely broadened, asymmetric red wings. This source of interest (SOI) is compact, ∼1.″6, and is located in the wake of a passing ribbon. Two methods were applied to measure the Doppler velocities associated with these red wings: spectral moments and multi-Gaussian fits. The spectral-moments method considers the averaged shift of the lines, which are 85, 125, and 115 km s−1for the Mgii , Cii , and Siiv lines respectively. The red-most Gaussian fit suggests a Doppler velocity up to ∼160 km s−1in all of the three lines. Downward mass motions with such high speeds are very atypical, with most chromospheric downflows in flares on the order 10–100 km s−1. Furthermore, extreme-UV (EUV) emission is strong within flaring loops connecting two flare ribbons located mainly to the east of the central flare region. The EUV loops that connect the SOI and its counterpart source in the opposite field are much less brightened, indicating that the density and/or temperature is comparatively low. These observations suggest a very fast downflowing plasma in the transition region and upper chromosphere, which decelerates rapidly since there is no equivalently strong shift of the O I chromospheric lines. This unusual observation presents a challenge that models of the solar atmosphere’s response to flares must be able to explain. -
Abstract Cyclical variations of the solar magnetic fields, and hence the level of solar activity, are among the top interests of space weather research. Surface flows in global-scale, in particular differential rotation and meridional flows, play important roles in the solar dynamo that describes the origin and variation of solar magnetic fields. In principle, differential rotation is the fundamental cause of dipole field formation and emergence, and meridional flows are the surface component of a longitudinal circulation that brings decayed field from low latitudes to polar regions. Such flows are key inputs and constraints of observational and modeling studies of solar cycles. Here, we present two methods, local correlation tracking (LCT) and machine learning-based self-supervised optical flow methods, to measure differential rotation and meridional flows from full-disk magnetograms that probe the photosphere and $\text{H}\alpha$ H α images that probe the chromosphere, respectively. LCT is robust in deriving photospheric flows using magnetograms. However, we found that it failed to trace flows using time-sequence $\text{H}\alpha $ H α data because of the strong dynamics of traceable features. The optical flow methods handle $\text{H}\alpha $ H α data better to measure the chromospheric flow fields. We found that the differential rotation from photospheric and chromospheric measurements shows a strong correlation with a maximum of $2.85~\upmu \text{rad}\,\text{s}^{-1}$ 2.85 μrad s − 1 at the equator and the accuracy holds until $60^{\circ }$ 60 ∘ for the MDI and $\text{H}\alpha$ H α , $75^{\circ }$ 75 ∘ for the HMI dataset. On the other hand, the meridional flow deduced from the chromospheric measurement shows a similar trend as the concurrent photospheric measurement within $60^{\circ }$ 60 ∘ with a maximum of $20~\text{m}\,\text{s}^{-1}$ 20 m s − 1 at $40^{\circ }$ 40 ∘ in latitude. Furthermore, the measurement uncertainties are discussed.more » « less