skip to main content

Search for: All records

Creators/Authors contains: "Yan, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available November 1, 2024
  3. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies withmore »red, green, and blue colors.

    « less
  4. Abstract: Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θ E  = 0.167″ and almost identical arrival times. The small θ E and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
    Free, publicly-accessible full text available June 12, 2024
  5. Abstract

    Critical point tracking is a core topic in scientific visualization for understanding the dynamic behaviour of time‐varying vector field data. The topological notion of robustness has been introduced recently to quantify the structural stability of critical points, that is, the robustness of a critical point is the minimum amount of perturbation to the vector field necessary to cancel it. A theoretical basis has been established previously that relates critical point tracking with the notion of robustness, in particular, critical points could be tracked based on their closeness in stability, measured by robustness, instead of just distance proximity within the domain. However, in practice, the computation of classic robustness may produce artifacts when a critical point is close to the boundary of the domain; thus, we do not have a complete picture of the vector field behaviour within its local neighbourhood. To alleviate these issues, we introduce a multilevel robustness framework for the study of 2D time‐varying vector fields. We compute the robustness of critical points across varying neighbourhoods to capture the multiscale nature of the data and to mitigate the boundary effect suffered by the classic robustness computation. We demonstrate via experiments that such a new notion of robustnessmore »can be combined seamlessly with existing feature tracking algorithms to improve the visual interpretability of vector fields in terms of feature tracking, selection and comparison for large‐scale scientific simulations. We observe, for the first time, that the minimum multilevel robustness is highly correlated with physical quantities used by domain scientists in studying a real‐world tropical cyclone dataset. Such an observation helps to increase the physical interpretability of robustness.

    « less
  6. Abstract Background

    CandidatusNanohaloarchaeota, an archaeal phylum within the DPANN superphylum, is characterized by limited metabolic capabilities and limited phylogenetic diversity and until recently has been considered to exclusively inhabit hypersaline environments due to an obligate association withHalobacteria. Aside from hypersaline environments,Ca.Nanohaloarchaeota can also have been discovered from deep-subsurface marine sediments.


    Three metagenome-assembled genomes (MAGs) representing a new order within theCa.Nanohaloarchaeota were reconstructed from a stratified salt crust and proposed to represent a novel order,Nucleotidisoterales. Genomic features reveal them to be anaerobes capable of catabolizing nucleotides by coupling nucleotide salvage pathways with lower glycolysis to yield free energy. Comparative genomics demonstrated that these and otherCa.Nanohaloarchaeota inhabiting saline habitats use a “salt-in” strategy to maintain osmotic pressure based on the high proportion of acidic amino acids. In contrast, previously describedCa.Nanohaloarchaeota MAGs from geothermal environments were enriched with basic amino acids to counter heat stress. Evolutionary history reconstruction revealed that functional differentiation of energy conservation strategies drove diversification withinCa.Nanohaloarchaeota, further leading to shifts in the catabolic strategy from nucleotide degradation within deeper lineages to polysaccharide degradation within shallow lineages.


    This study provides deeper insight into the ecological functions and evolution of the expanded phylumCa.Nanohaloarchaeota and further advances our understanding on the functional and geneticmore »associations between potential symbionts and hosts.

    « less
  7. Abstract

    We present observations of a peculiar hydrogen- and helium-poor stripped-envelope (SE) supernova (SN) 2020wnt, primarily in the optical and near-infrared (near-IR). Its peak absolute bolometric magnitude of −20.9 mag (Lbol, peak= (6.8 ± 0.3) × 1043erg s−1) and a rise time of 69 days are reminiscent of hydrogen-poor superluminous SNe (SLSNe I), luminous transients potentially powered by spinning-down magnetars. Before the main peak, there is a brief peak lasting <10 days post explosion, likely caused by interaction with circumstellar medium (CSM) ejected ∼years before the SN explosion. The optical spectra near peak lack a hot continuum and Oiiabsorptions, which are signs of heating from a central engine; they quantitatively resemble those of radioactivity-powered hydrogen/helium-poor Type Ic SESNe. At ∼1 yr after peak, nebular spectra reveal a blue pseudo-continuum and narrow Oirecombination lines associated with magnetar heating. Radio observations rule out strong CSM interactions as the dominant energy source at +266 days post peak. Near-IR observations at +200–300 days reveal carbon monoxide and dust formation, which causes a dramatic optical light-curve dip. Pair-instability explosion models predict slow light curve and spectral features incompatible with observations. SN 2020wnt is best explained as a magnetar-powered core-collapse explosion of a 28Mpre-SN star. Themore »explosion kinetic energy is significantly larger than the magnetar energy at peak, effectively concealing the magnetar-heated inner ejecta until well after peak. SN 2020wnt falls into a continuum between normal SNe Ic and SLSNe I, and demonstrates that optical spectra at peak alone cannot rule out the presence of a central engine.

    « less
  8. Abstract Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forwardmore »toward the Rubin era.« less
    Free, publicly-accessible full text available December 28, 2023
  9. Abstract During the Zwicky Transient Facility (ZTF) Phase I operations, 78 hydrogen-poor superluminous supernovae (SLSNe-I) were discovered in less than 3 yr, constituting the largest sample from a single survey. This paper (Paper I) presents the data, including the optical/UV light curves and classification spectra, while Paper II in this series will focus on the detailed analysis of the light curves and modeling. Our photometry is primarily taken by ZTF in the g , r , and i bands, and with additional data from other ground-based facilities and Swift. The events of our sample cover a redshift range of z = 0.06 − 0.67, with a median and 1 σ error (16% and 84% percentiles) of z med = 0.265 − 0.135 + 0.143 . The peak luminosity covers −22.8 mag ≤ M g ,peak ≤ −19.8 mag, with a median value of − 21.48 − 0.61 + 1.13 mag. The light curves evolve slowly with a mean rest-frame rise time of t rise = 41.9 ± 17.8 days. The luminosity and timescale distributions suggest that low-luminosity SLSNe-I with a peak luminosity ∼−20 mag or extremely fast-rising events (<10 days) exist, but are rare. We confirm previous findings that slowlymore »rising SLSNe-I also tend to fade slowly. The rest-frame color and temperature evolution show large scatters, suggesting that the SLSN-I population may have diverse spectral energy distributions. The peak rest-frame color shows a moderate correlation with the peak absolute magnitude, i.e., brighter SLSNe-I tend to have bluer colors. With optical and UV photometry, we construct the bolometric luminosity and derive a bolometric correction relation that is generally applicable for converting g , r -band photometry to the bolometric luminosity for SLSNe-I.« less
    Free, publicly-accessible full text available January 1, 2024

    We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks Mg < −20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. 56Ni decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H α profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source inmore »most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however – possibly a central engine combined with CSI.

    « less