skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yang, Chenxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 7, 2025
  2. Abstract

    Sequence-specific RNA-binding proteins (RBPs) play central roles in splicing decisions. Here, we describe a modular splicing architecture that leverages in vitro-derived RNA affinity models for 79 human RBPs and the annotated human genome to produce improved models of RBP binding and activity. Binding and activity are modeled by separate Motif and Aggregator components that can be mixed and matched, enforcing sparsity to improve interpretability. Training a new Adjusted Motif (AM) architecture on the splicing task not only yields better splicing predictions but also improves prediction of RBP-binding sites in vivo and of splicing activity, assessed using independent data.

     
    more » « less
  3. This paper describes an open-access database for seismo-cardiogram (SCG) and gyro-cardiogram (GCG) signals. The archive comprises SCG and GCG recordings sourced from and processed at multiple sites worldwide, including Columbia University Medical Center and Stevens Institute of Technology in the United States, as well as Southeast University, Nanjing Medical University, and the first affiliated hospital of Nanjing Medical University in China. It includes electrocardiogram (ECG), SCG, and GCG recordings collected from 100 patients with various conditions of valvular heart diseases such as aortic and mitral stenosis. The recordings were collected from clinical environments with the same types of wearable sensor patch. Besides the raw recordings of ECG, SCG, and GCG signals, a set of hand-corrected fiducial point annotations is provided by manually checking the results of the annotated algorithm. The database also includes relevant echocardiogram parameters associated with each subject such as ejection fraction, valve area, and mean gradient pressure. 
    more » « less
  4. null (Ed.)
  5. Abstract

    This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS.

     
    more » « less
  6. null (Ed.)