Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

There has been a longstanding interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding kedge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficientlydiverse, yet approximatelyoptimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximatelyoptimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budgetconstrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that biapproximations to the BCO can be used to give biapproximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse capproximate maximum matchings, shortest paths, global mincut, and minimum weight bases of a matroid. The last result gives us diverse capproximate minimum spanning trees, advancing a step towards achieving diverse capproximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial timore » « less

There has been a longstanding interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding kedge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficientlydiverse, yet approximatelyoptimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximatelyoptimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budgetconstrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that biapproximations to the BCO can be used to give biapproximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse capproximate maximum matchings, shortest paths, global mincut, and minimum weight bases of a matroid. The last result gives us diversecapproximate minimum spanning trees, advancing a step towards achieving diverse capproximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time.more » « less

Goaoc, Xavier ; Kerber, Michael (Ed.)We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NPhard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(11/k)approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(11/k)+ε)approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in nonEuclidean metrics.more » « less