skip to main content

Search for: All records

Creators/Authors contains: "Yang, Lan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 24, 2025
  2. Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual testing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strategy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared to K -nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Traffic energy consumption estimation is significant for the sustainable transportation. However, it is difficult to directly employ macro traffic flow data to accurately estimate the traffic energy consumption due to many traffic energy consumption models need second-by-second vehicle trajectory. To solve this problem, this paper proposes a traffic energy consumption model based on the macro-micro data, which the macro data derived from the fixed-location sensors and sparse micro data derived from the Connected and Automated Vehicles (CAVs). The completed vehicle trajectories are constructed by the nonparametric kernel smoothing algorithm and variational theory. To test the performance of the proposed method, the Next Generation Simulation micro (NGSIM) dataset and Caltrans Performance Measurement System macro dataset obtained from the same road and time are used. The results indicate that the proposed method not only can reflect the characteristics of traffic kinematic waves caused by traffic congestion, but also minimize the errors generated by the macro-micro transformation. In addition, it can significantly improve the accuracy of energy consumption estimation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott–Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.

    more » « less
  5. Order is one of the most important concepts to interpret various phenomena such as the emergence of turbulence and the life-evolution process. The generation of laser can also be treated as an ordering process in which the interaction between the laser beam and the gain medium leads to the correlation between photons in the output optical field. Here, we demonstrate experimentally in a hybrid Raman-laser-optomechanical system that an ordered Raman laser can be generated from an entropy-absorption process by a chaotic optomechanical resonator. When the optomechanical resonator is chaotic or disordered enough, the Raman-laser field is in an ordered lasing mode. This can be interpreted by the entropy transfer from the Raman-laser mode to the chaotic motion mediated by optomechanics. Different order parameters, such as the box-counting dimension, the maximal Lyapunov exponent, and the Kolmogorov entropy, are introduced to quantitatively analyze this entropy transfer process, by which we can observe the order transfer between the Raman-laser mode and the optomechanical resonator. Our study presents a new mechanism of laser generation and opens up new dimensions of research such as the modulation of laser by optomechanics.

    more » « less
  6. Non-Hermitian optics is a burgeoning field at the intersection of quantum physics, electrodynamics, and nanophotonics. It provides a new perspective of the role of gain and loss in optical systems. Leveraging the advanced designs inspired by non-Hermitian physics, classical optical platforms have been widely investigated to unveil novel physical concepts, such as parity-time symmetry and exceptional points, which have no counterparts in the conventional Hermitian settings. These investigations have yielded a plethora of new phenomena in optical wave scattering, optical sensing, and nonlinear optical processes. Non-Hermitian effects also have a profound impact on the lasing behaviors in the semiclassical framework of lasers, allowing for novel ways to engineer single-mode lasers, chiral laser emission, laser noise, linewidth, etc. Furthermore, over recent years, there has been increasing interest in the explorations of non-Hermitian physics in quantum optics, which addresses photon statistics, entanglement, decoherence, and quantum sensing in non-Hermitian systems. In this review, we review the most recent theoretical and experimental advances in non-Hermitian optics and photonics, covering the significant progress in both classical and quantum optics regimes.

    more » « less
  7. Abstract

    Non-Hermitian degeneracies, also known as exceptional points (EPs), have been the focus of much attention due to their singular eigenvalue surface structure. Nevertheless, as pertaining to a non-Hermitian metasurface platform, the reduction of an eigenspace dimensionality at the EP has been investigated mostly in a passive repetitive manner. Here, we propose an electrical and spectral way of resolving chiral EPs and clarifying the consequences of chiral mode collapsing of a non-Hermitian gated graphene metasurface. More specifically, the measured non-Hermitian Jones matrix in parameter space enables the quantification of nonorthogonality of polarisation eigenstates and half-integer topological charges associated with a chiral EP. Interestingly, the output polarisation state can be made orthogonal to the coalesced polarisation eigenstate of the metasurface, revealing the missing dimension at the chiral EP. In addition, the maximal nonorthogonality at the chiral EP leads to a blocking of one of the cross-polarised transmission pathways and, consequently, the observation of enhanced asymmetric polarisation conversion. We anticipate that electrically controllable non-Hermitian metasurface platforms can serve as an interesting framework for the investigation of rich non-Hermitian polarisation dynamics around chiral EPs.

    more » « less
  8. Abstract

    On‐chip optical nonreciprocity is one of the essential functions to fully advance the development of integrated optical systems, which remains technically challenging in many aspects. There is a great need for mechanisms and approaches to facilitate the large‐scale implementation of nonreciprocal light propagation. Recently, unconventional phenomena, such as chiral optical modes and directional light propagation, have been unraveled at exceptional points (EPs), which are unique degeneracies in the energy spectrum and eigenspace of non‐Hermitian systems. Here, this work theoretically and experimentally demonstrates that by steering a single microresonator with thermo‐optic nonlinearity to chiral EPs, nonreciprocal light propagation is achieved with an isolation ratio up to 24 dB and insertion loss less than 0.5 dB. The nonreciprocity is dependent on the chirality and could be optimized near the EPs. Their results pave new avenues for the nonreciprocal control of light propagation enabled by non‐Hermitian degeneracies and hold great potential for microscale and nanoscale on‐chip nonreciprocal devices.

    more » « less
  9. Abstract

    Topological insulators (TIs) have attracted significant attention in photonics and acoustics due to their unique physical properties and promising applications. Electronics has recently emerged as an exciting arena to study various topological phenomena because of its advantages in building complex topological structures. Here, we explore TIs on an integrated circuit (IC) platform with a standard complementary metal-oxide-semiconductor technology. Based on the Su–Schrieffer–Heeger model, we design a fully integrated topological circuit chain using multiple capacitively-coupled inductor–capacitor resonators. We perform comprehensive post-layout simulations on its physical layout to observe and evaluate the salient topological features. Our results demonstrate the existence of the topological edge state and the remarkable robustness of the edge state against various defects. Our work shows the feasibility and promise of studying TIs with IC technology, paving the way for future explorations of large-scale topological electronics on the scalable IC platform.

    more » « less