A hierarchical multiscale modeling framework is proposed to simulate flowslide triggering and runout. It couples a system‐scale sliding‐consolidation model (SCM) resolving hydro‐mechanical feedbacks within a flowslide with a local‐scale solver based on the discrete element method (DEM) replicating the sand deformation response in the liquefied regime. This coupling allows for the simulation of a seamless transition from solid‐ to fluid‐like behavior following liquefaction, which is controlled by the grain‐scale dynamics. To investigate the role of grain‐scale interactions, the DEM simulations replace the constitutive model within the SCM framework, enabling the capture of the emergent rate‐dependent behavior of the sand during the inertial regime of motion. For this purpose, a novel algorithm is proposed to ensure the accurate passage of the strain rate from the global analysis to the local DEM solver under both quasi‐static (pre‐triggering) and dynamic (post‐triggering) regimes of motion. Our findings demonstrate that the specifics of the coupling algorithm do not bear significant consequences to the triggering analysis, in that the grain‐scale dynamics is negligible. By contrast, major differences between the results obtained with traditional algorithms and the proposed algorithm are found for the post‐triggering stage. Specifically, the existing algorithms suffer from loss of convergence and require proper numerical treatment to capture the micro‐inertial effects arising from the post‐liquefaction particle agitation responsible for viscous‐like effects that spontaneously regulate the flowslide velocity. These findings emphasize the important role of rate‐dependent feedback for the analysis of natural hazards involving granular materials, especially for post‐failure propagation analysis.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available April 1, 2025 -
Free, publicly-accessible full text available May 20, 2025
-
Free, publicly-accessible full text available January 1, 2025
-
Abstract Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1moieties on copper surfaces, facile CO*hydrogenation to CHO*or CO-CHO*coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4or C2H4through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2reduction in aqueous phases.