skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yang, Ping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the causes of shifts in the subsiding edge of the boreal winter Hadley cell (HC) in response to a comprehensive treatment of ocean surface albedo (OSA) in the fully coupled CESM2. The focus is on an in‐depth understanding of the atmospheric dynamical processes that influence the HC subsiding edge. Two sets of experiments were performed: one utilizing the default OSA, and the other employing the comprehensive OSA that accounts for realistic physical mechanisms. The results show that implementing the comprehensive OSA simulates an El Niño‐like warming pattern in reference to the default experiment, which leads to an HC contraction. Examination of zonal mean momentum dynamics in the upper troposphere reveals that variations in meridional winds, crucial for determining the HC extent, are primarily driven by the differences in the horizontal eddy momentum flux derivative. The findings indicate that the equatorward shift in meridional temperature gradients enhances subtropical zonal winds and baroclinicity along their equatorial flanks, amplifying equatorward‐propagating Rossby waves. This, in turn, alters the eddy momentum flux, reshaping the pattern of the derivatives of horizontal eddy momentum flux, constraining meridional winds, and resulting in the equatorward movement of the HC subsiding edge. A scaling theory further supports the results of the HC contraction, showing that the increased subtropical zonal winds and the equatorward shift of the Intertropical Convergence Zone (ITCZ) elevate the atmospheric angular momentum and eventually limit the expansion of the HC. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  2. Abstract Super‐coarse dust particles (diameters >10 μm) are evidenced to be more abundant in the atmosphere than model estimates and contribute significantly to the dust climate impacts. Since super‐coarse dust accounts for less dust extinction in the visible‐to‐near‐infrared (VIS‐NIR) than in the thermal infrared (TIR) spectral regime, they are suspected to be underestimated by remote sensing instruments operates only in VIS‐NIR, including Aerosol Robotic Networks (AERONET), a widely used data set for dust model validation. In this study, we perform a radiative closure assessment using the AERONET‐retrieved size distribution in comparison with the collocated Atmospheric Infrared Sounder (AIRS) TIR observations with comprehensive uncertainty analysis. The consistently warm bias in the comparisons suggests a potential underestimation of super‐coarse dust in the AERONET retrievals due to the limited VIS‐NIR sensitivity. An extra super‐coarse mode included in the AERONET‐retrieved size distribution helps improve the TIR closure without deteriorating the retrieval accuracy in the VIS‐NIR. 
    more » « less
  3. Abstract Accurate distance determination to astrophysical objects is essential for the understanding of their intrinsic brightness and size. The distance to SN 1987A has been previously measured by the expanding photosphere method and by using the angular size of the circumstellar rings with absolute sizes derived from light curves of narrow UV emission lines, with reported distances ranging from 46.77 to 55 kpc. In this study, we independently determined the distance to SN 1987A using photometry and imaging polarimetry observations of AT 2019xis, a light echo of SN 1987A, by adopting a radiative transfer model of the light echo developed in Ding et al. We obtained distances to SN 1987A in the range from 49.09 ± 2.16 kpc to 59.39 ± 3.27 kpc, depending on the interstellar polarization and extinction corrections, which are consistent with the literature values. This study demonstrates the potential of using light echoes as a tool for distance determination to astrophysical objects in the Milky Way, up to kiloparsec level scales. 
    more » « less
  4. Abstract Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN;Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and differentatgmutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activatingATGexpression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1. 
    more » « less
  5. Pesticides benefit agriculture by increasing crop yield, quality, and security. However, pesticides may inadvertently harm bees, which are valuable as pollinators. Thus, candidate pesticides in development pipelines must be assessed for toxicity to bees. Leveraging a dataset of 382 molecules with toxicity labels from honey bee exposure experiments, we train a support vector machine (SVM) to predict the toxicity of pesticides to honey bees. We compare two representations of the pesticide molecules: (i) a random walk feature vector listing counts of length- L walks on the molecular graph with each vertex- and edge-label sequence and (ii) the Molecular ACCess System (MACCS) structural key fingerprint (FP), a bit vector indicating the presence/absence of a list of pre-defined subgraph patterns in the molecular graph. We explicitly construct the MACCS FPs but rely on the fixed-length- L random walk graph kernel (RWGK) in place of the dot product for the random walk representation. The L-RWGK-SVM achieves an accuracy, precision, recall, and F1 score (mean over 2000 runs) of 0.81, 0.68, 0.71, and 0.69, respectively, on the test data set—with L = 4 being the mode optimal walk length. The MACCS-FP-SVM performs on par/marginally better than the L-RWGK-SVM, lends more interpretability, but varies more in performance. We interpret the MACCS-FP-SVM by illuminating which subgraph patterns in the molecules tend to strongly push them toward the toxic/non-toxic side of the separating hyperplane. 
    more » « less
  6. Both the computational costs and the accuracy of the invariant-imbedding T-matrix method escalate with increasing the truncation numberNat which the expansions of the electromagnetic fields in terms of vector spherical harmonics are truncated. Thus, it becomes important in calculation of the single-scattering optical properties to chooseNjust large enough to satisfy an appropriate convergence criterion; thisNwe call the optimal truncation number. We present a new convergence criterion that is based on the scattering phase function rather than on the scattering cross section. For a selection of homogeneous particles that have been used in previous single-scattering studies, we consider how the optimalNmay be related to the size parameter, the index of refraction, and particle shape. We investigate a functional form for this relation that generalizes previous formulae involving only size parameter, a form that shows some success in summarizing our computational results. Our results indicate clearly the sensitivity of optimal truncation number to the index of refraction, as well as the difficulty of cleanly separating this dependence from the dependence on particle shape. 
    more » « less