skip to main content

Search for: All records

Creators/Authors contains: "Yang, Teng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The principle of the conventional ultrasound test states that the detectable voids cannot be smaller than the acoustic wavelength. However, by using effective medium approximation, the fraction of small voids can be estimated by the variation of the effective density. In this study, a non-contacting ultrasound-based porosity fraction mapping methodology is developed for estimated small voids in coal with long operating wavelength in air. This novel ultrasonic technique based on the mechanical properties of coal offers a rapid scan of the effective density mapping and distribution of void fraction over a large sample area, which overcame the limitation of small voids detection in the conventional ultrasound testing. 
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  2. The functionality of thermally active phononic crystals (PnC) and metamaterials can be greatly enhanced by utilizing the temperature-dependent physical characteristics of heat-sensitive materials within the periodic structure. The phase transformation between water and ice occurs within a narrow range of temperatures that can lead to significant changes in its acoustic transmission due to the modification of the elastic properties of periodic phononic structures in an aqueous medium. A phononic crystal with acrylic scatterers in water is designed to function as an acoustic filter, beam splitter, or lensing based on the device’s temperature due to changes in the phase of the ambient medium. The transition from room temperature to freezing point reduces the contrast in acoustic properties between the ice-lattice and the scatterer materials (acrylic) and switches off the metamaterial of the water-based PnC. The numerically simulated equi-frequency contours and wave propagation characteristics demonstrate the switchable meta-material to the periodic phononic structure’s normal behavior due to the phase transition of water. Effects such as Van Hove’s singularity and filamentation-like effects in an acoustic meta-material system can be thermally tuned. 
    more » « less
  3. Metals are excellent conductors for phonon transportation such as vibration, sound, and heat. Generally, metal sound insulators require multimaterial structure or defects and unimetal sound insulators are challenging. Therefore, a design of a defect‐free sound insulator made by single alloys with multiple friction stir processes (FSPs) is proposed. Periodic friction stir processing can induce superlattice‐like local mechanical properties’ modifications. By experimental acoustic characterization, it is observed that FSP can introduce clear acoustic–elastic property contrast on an aluminum plate by the presence of stir zone and heat‐affected zones. In numerical simulations, the signature FSP‐induced property profile is periodically and parallelly arranged on a long aluminum plate. The transmission gap frequencies are present on the frequency spectrum with the sound propagation direction perpendicular to the FSP paths. Disorder offsets on FSP periodicity are further introduced. Anderson localization is found on a resonance frequency, which provides −11 dB sound reduction by an exponential decay. Due to the finite design length, the slight disorder can also enhance sound insulation in the periodic transmission gap frequency. With analysis and comparison with different configurations, the best performance in the models can achieve −30 dB sound insulation in the 350 mm‐long aluminum alloy plate with 14 parallel FSPs.

    more » « less
  4. null (Ed.)
    Abstract Rapid thermokinetics associated with laser-based additive manufacturing produces strong bulk crystallographic texture in the printed component. The present study identifies such a bulk texture effect on elastic anisotropy in laser powder bed fused Ti6Al4V by employing an effective bulk modulus elastography technique coupled with ultrasound shear wave velocity measurement at a frequency of 20 MHz inside the material. The combined technique identified significant attenuation of shear velocity from 3322 ± 20.12 to 3240 ± 21.01 m/s at 45 $$^\circ$$ ∘ and 90 $$^\circ$$ ∘ orientations of shear wave plane with respect to the build plane of printed block of Ti6Al4V. Correspondingly, the reduction in shear modulus from 48.46 ± 0.82 to 46.40 ± 0.88 GPa was obtained at these orientations. Such attenuation is rationalized based on the orientations of $$\alpha ^\prime$$ α ′ crystallographic variants within prior columnar $$\beta$$ β grains in additively manufactured Ti6Al4V. 
    more » « less
  5. null (Ed.)
    An acoustic metamaterial superlattice is used for the spatial and spectral deconvolution of a broadband acoustic pulse into narrowband signals with different central frequencies. The operating frequency range is located on the second transmission band of the superlattice. The decomposition of the broadband pulse was achieved by the frequency-dependent refraction angle in the superlattice. The refracted angle within the acoustic superlattice was larger at higher operating frequency and verified by numerical calculated and experimental mapped sound fields between the layers. The spatial dispersion and the spectral decomposition of a broadband pulse were studied using lateral position-dependent frequency spectra experimentally with and without the superlattice structure along the direction of the propagating acoustic wave. In the absence of the superlattice, the acoustic propagation was influenced by the usual divergence of the beam, and the frequency spectrum was unaffected. The decomposition of the broadband wave in the superlattice’s presence was measured by two-dimensional spatial mapping of the acoustic spectra along the superlattice’s in-plane direction to characterize the propagation of the beam through the crystal. About 80% of the frequency range of the second transmission band showed exceptional performance on decomposition. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    The temperature dependence of the mechanical properties of polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) hydrogel was studied from the static and dynamic bulk modulus of the material. The effect of the temperature-induced volumetric phase transition on Young’s Modulus, Poisson’s ratio, and the density of PVA-PNIPAm was experimentally measured and compared with a non-thermo-responsive Alginate hydrogel as a reference. An increase in the temperature from 27.5 to 32 °C results in the conventional temperature-dependent de-swelling of the PVA-PNIPAm hydrogel volume of up to 70% at the lower critical solution temperature (LCST). However, with the increase in temperature, the PVA-PNIPAm hydrogel showed a drastic increase in Young’s Modulus and density of PVA-PNIPAm and a corresponding decrease in the Poisson’s ratio and the static bulk modulus around the LCST temperature. The dynamic bulk modulus of the PVA-PNIPAm hydrogel is highly frequency-dependent before the LCST and highly temperature-sensitive after the LCST. The dynamic elastic properties of the thermo-responsive PVA-PNIPAm hydrogel were compared and observed to be significantly different from the thermally insensitive Alginate hydrogel. 
    more » « less
  8. null (Ed.)
    In this study, a novel ultrasonic non-destructive and non-invasive elastography method was introduced and demonstrated to evaluate the mechanical properties of fused deposition modeling 3D printed objects using two-dimensional dynamical elasticity mapping. Based on the recently investigated dynamic bulk modulus and effective density imaging technique, an angle-dependent dynamic shear modulus measurement was performed to extract the dynamic Young’s modulus distribution of the FDM structures. The elastographic image analysis demonstrated the presence of anisotropic dynamic shear modulus and dynamic Young’s modulus existing in the fused deposition modeling 3D printed objects. The non-destructive method also differentiated samples with high contrast property zones from that of low contrast property regions. The angle-dependent elasticity contrast behavior from the ultrasonic method was compared with conventional and static tensile tests characterization. A good correlation between the nondestructive technique and the tensile test measurements was observed. 
    more » « less