Abstract Recently, additive manufacturing (AM) fabrications are commonly applied to produce acoustic metamaterials or phononic crystals (PnCs) as tools for complex geometrical designs. However, the material properties of those additive manufactured materials are less involved in the core portion of those PnC designs. Here we report a purely materials-driven, temperature switchable PnC in which Bragg gaps appear or vanish as the lattice medium toggles between liquid water and solid ice. Six widely used AM polymers were acoustically characterized, where stereolithography (SLA) resins showed an impedance mismatch of ≈50% with water but <1% with ice, whereas inkjet agar gel exhibited the opposite trend. A 10 × 10 SLA resin PnC therefore displayed >20 dB on/off contrast at 145 kHz and around 300 kHz when cycled across 0 °C, confirmed experimentally and with plane wave and simulation models. Unlike previous thermally tuned PnCs that depend on volumetric swelling or liquid metal infiltration, the present approach preserves geometry, requires no external actuators and operates with sub 1 °C stability. This simple, robust strategy lays the foundation for band pass filters, steerable lenses and non-reciprocal acoustic circuits that can be frozen or thawed on demand.
more »
« less
Multifunctional phononic meta-material actuated by the phase transition in water
The functionality of thermally active phononic crystals (PnC) and metamaterials can be greatly enhanced by utilizing the temperature-dependent physical characteristics of heat-sensitive materials within the periodic structure. The phase transformation between water and ice occurs within a narrow range of temperatures that can lead to significant changes in its acoustic transmission due to the modification of the elastic properties of periodic phononic structures in an aqueous medium. A phononic crystal with acrylic scatterers in water is designed to function as an acoustic filter, beam splitter, or lensing based on the device’s temperature due to changes in the phase of the ambient medium. The transition from room temperature to freezing point reduces the contrast in acoustic properties between the ice-lattice and the scatterer materials (acrylic) and switches off the metamaterial of the water-based PnC. The numerically simulated equi-frequency contours and wave propagation characteristics demonstrate the switchable meta-material to the periodic phononic structure’s normal behavior due to the phase transition of water. Effects such as Van Hove’s singularity and filamentation-like effects in an acoustic meta-material system can be thermally tuned.
more »
« less
- Award ID(s):
- 1741677
- PAR ID:
- 10470169
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Physica Scripta
- Volume:
- 98
- Issue:
- 6
- ISSN:
- 0031-8949
- Page Range / eLocation ID:
- 065008-1-8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Defects can be introduced within a 2-D periodic lattice to realize phononic cavities or phononic crystal (PnC) waveguides at the ultrasonic frequency range. The arrangement of these defects within a PnC lattice results in the modification of the Q factor of the cavity or the waveguide. In this work, cavity defects within a PnC formed using cylindrical stainless steel scatterers in water have been modified to control the propagation and Q factor of acoustic waveguides realized through defect channels. The defects channel based waveguides within the PnC were configured horizontally, vertically, and diagonally along the direction of the propagation of the acoustic waves. Numerical simulations supported by experimental demonstration indicate that the defect-based waveguide's Q factor is improved by over 15 times for the diagonal configuration compared to the horizontal configuration. It also increases due to an increase in the scatterers' radius, varied from 0.7 -0.95 mm.more » « less
-
A reconfigurable phononic crystal (PnC) is proposed where elastic properties can be modulated by rotation of asymmetric solid scatterers immersed in water. The scatterers are metallic rods with a cross section of 120◦ circular sector. Orientation of each rod is independently controlled by an external electric motor that allows continuous variation of the local scattering parameters and dispersion of sound in the entire crystal. Due to asymmetry of the scatterers, the crystal band structure possesses highly anisotropic band gaps. Synchronous rotation of all the scatterers by a definite angle changes the regime of reflection to the regime of transmission and vice versa. The same mechanically tunable structure functions as a gradient index medium by incremental, angular reorientation of rods along both row and column, and, subsequently, can serve as a tunable acoustic lens, an acoustic beam splitter, and finally an acoustic beam steerer.more » « less
-
The square lattice phononic crystal (PnC) has been used extensively to demonstrate metamaterial effects. Here, positive and negative refraction and reflection are observed simultaneously due to the presence of Umklapp scattering of sound at the surface of PnC and square-like equifrequency contours (EFCs). It is found that a shift in the EFC of the third transmission band away from the center of the Brillouin zone results in an effectively inverted EFC. The overlap of the EFC of the second and third band produce quasimomentum-matching conditions that lead to multi-refringence phenomena from a single incident beam without the introduction of defects into the lattice. Additionally, the coupling of a near-normal incident wave to a propagating almost perpendicular Bloch mode is shown to lead to strong right-angle redirection and collimation of the incident acoustic beam. Each effect is demonstrated both numerically and experimentally for scattering of ultrasound at a 10-period PnC slab in water environment.more » « less
-
null (Ed.)This work demonstrates the detections and mappings of a solid object using a thermally tunable solid-state phononic crystal lens at low frequency for potential use in future long-distance detection. The phononic crystal lens is infiltrated with a polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) bulk hydrogel polymer. The hydrogel undergoes a volumetric phase transition due to a temperature change leading to a temperature-dependent sound velocity and density. The temperature variation from 20 °C to 39 °C changes the focal length of the tunable solid-state lens by 1 cm in the axial direction. This thermo-reversible tunable focal length lens was used in a monostatic setup for one- and two-dimensional mapping scans in both frequency domain echo-intensity and temporal domain time-of-flight modes. The experimental results illustrated 1.03 ± 0.15λ and 2.35 ± 0.28λ on the lateral and axial minimum detectable object size. The experiments using the tunable lens demonstrate the capability to detect objects by changing the temperature in water without translating an object, source, or detector. The time-of-flight mode modality using the tunable solid-state phononic lens increases the signal-to-noise ratio compared to a conventional phononic crystal lens.more » « less
An official website of the United States government

