skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yang, Xuejin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have developed a highly efficient synthesis of linear polydicyclopentadiene (pDCPD)viaphotoredox mediated metal-free ring-opening metathesis polymerization (MF-ROMP) and investigated theTgMndependence of linear pDCPD.

     
    more » « less
  2. Abstract

    Post‐polymerization modification (PPM) via direct C−H functionalization is a powerful synthetic strategy to convert polymer feed‐stocks into value‐added products. We found that a metal‐free, Se‐catalyzed allylic C−H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring‐opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds. Amination using a series of aryl sulfonamides led to good control over the degree of functionalization, access to a range of functionalities, and tunable thermal properties from the resulting polymers.

     
    more » « less
  3. Abstract

    Post‐polymerization modification (PPM) via direct C−H functionalization is a powerful synthetic strategy to convert polymer feed‐stocks into value‐added products. We found that a metal‐free, Se‐catalyzed allylic C−H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring‐opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds. Amination using a series of aryl sulfonamides led to good control over the degree of functionalization, access to a range of functionalities, and tunable thermal properties from the resulting polymers.

     
    more » « less
  4. Abstract

    Stereochemistry can have a profound impact on polymer and materials properties. Unfortunately, straightforward methods for realizing high levels of stereocontrolled polymerizations are often challenging to achieve. In a departure from traditional metal‐mediated ring‐opening metathesis polymerization (ROMP), we discovered a remarkably simple method for controlling alkene stereochemistry in photoredox mediated metal‐free ROMP. Ion‐pairing, initiator sterics, and solvation effects each had profound impact on the stereochemistry of polynorbornene (PNB). Simple modifications to the reaction conditions produced PNB withtransalkene content of 25 to >98 %. Highciscontent was obtained from relatively larger counterions, toluene as solvent, low temperatures (−78 °C), and initiators with low Charton values. Conversely, smaller counterions, dichloromethane as solvent, and enol ethers with higher Charton values enabled production of PNB with hightranscontent. Data from a combined experimental and computational investigation are consistent with the stereocontrolling step of the radical cationic mechanism proceeding under thermodynamic control.

     
    more » « less
  5. Abstract

    Stereochemistry can have a profound impact on polymer and materials properties. Unfortunately, straightforward methods for realizing high levels of stereocontrolled polymerizations are often challenging to achieve. In a departure from traditional metal‐mediated ring‐opening metathesis polymerization (ROMP), we discovered a remarkably simple method for controlling alkene stereochemistry in photoredox mediated metal‐free ROMP. Ion‐pairing, initiator sterics, and solvation effects each had profound impact on the stereochemistry of polynorbornene (PNB). Simple modifications to the reaction conditions produced PNB withtransalkene content of 25 to >98 %. Highciscontent was obtained from relatively larger counterions, toluene as solvent, low temperatures (−78 °C), and initiators with low Charton values. Conversely, smaller counterions, dichloromethane as solvent, and enol ethers with higher Charton values enabled production of PNB with hightranscontent. Data from a combined experimental and computational investigation are consistent with the stereocontrolling step of the radical cationic mechanism proceeding under thermodynamic control.

     
    more » « less