skip to main content


Search for: All records

Creators/Authors contains: "Yao, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polarimetric imaging has a wide range of applications for uncovering features invisible to human eyes and conventional imaging sensors. Chip-integrated, fast, cost-effective, and accurate full-Stokes polarimetric imaging sensors are highly desirable in many applications, which, however, remain elusive due to fundamental material limitations. Here we present a chip-integratedMetasurface-based Full-StokesPolarimetricImaging sensor (MetaPolarIm) realized by integrating an ultrathin (~600 nm) metasurface polarization filter array (MPFA) onto a visible imaging sensor with CMOS compatible fabrication processes. The MPFA is featured with broadband dielectric-metal hybrid chiral metasurfaces and double-layer nanograting polarizers. This chip-integrated polarimetric imaging sensor enables single-shot full-Stokes imaging (speed limited by the CMOS imager) with the most compact form factor, records high measurement accuracy, dual-color operation (green and red) and a field of view up to 40 degrees. MetaPolarIm holds great promise to enable transformative applications in autonomous vision, industry inspection, space exploration, medical imaging and diagnosis.

     
    more » « less
  2. Free, publicly-accessible full text available April 1, 2024
  3. ABSTRACT

    Supermassive black holes (SMBHs) are commonly found at the centres of most massive galaxies. Measuring SMBH mass is crucial for understanding the origin and evolution of SMBHs. Traditional approaches, on the other hand, necessitate the collection of spectroscopic data, which is costly. We present an algorithm that weighs SMBHs using quasar light time series information, including colours, multiband magnitudes, and the variability of the light curves, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a sample of 38 939 spectroscopically confirmed quasars to map out the non-linear encoding between SMBH mass and multiband optical light curves. We find a 1σ scatter of 0.37 dex between the predicted SMBH mass and the fiducial virial mass estimate based on SDSS single-epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate. Our results have direct implications for more efficient applications with future observations from the Vera C. Rubin Observatory. Our code, AGNet, is publicly available at https://github.com/snehjp2/AGNet.

     
    more » « less
  4. Abstract

    Graphene is an attractive material for all-optical modulation because of its ultrafast optical response and broad spectral coverage. However, all-optical graphene modulators reported so far require high pump fluence due to the ultrashort photo-carrier lifetime and limited absorption in graphene. We present modulator designs based on graphene-metal hybrid plasmonic metasurfaces with highly enhanced light-graphene interaction in the nanoscale hot spots at pump and probe (signal) wavelengths. Based on this design concept, we have demonstrated high-speed all-optical modulators at near and mid-infrared wavelengths (1.56 μm and above 6 μm) with significantly reduced pump fluence (1–2 orders of magnitude) and enhanced optical modulation. Ultrafast near-infrared pump-probe measurement results suggest that the modulators’ response times are ultimately determined by graphene’s ultrafast photocarrier relaxation times on the picosecond scale. The proposed designs hold the promise to address the challenges in the realization of ultrafast all-optical modulators for mid-and far-infrared wavelengths.

     
    more » « less
  5. Abstract

    Structural color printings have broad applications due to their advantages of long-term sustainability, eco-friendly manufacturing, and ultra-high resolution. However, most of them require costly and time-consuming fabrication processes from nanolithography to vacuum deposition and etching. Here, we demonstrate a new color printing technology based on polymer-assisted photochemical metal deposition (PPD), a room temperature, ambient, and additive manufacturing process without requiring heating, vacuum deposition or etching. The PPD-printed silver films comprise densely aggregated silver nanoparticles filled with a small amount (estimated <20% volume) of polymers, producing a smooth surface (roughness 2.5 nm) even better than vacuum-deposited silver films (roughness 2.8 nm) at ~4 nm thickness. Further, the printed composite films have a much larger effective refractive indexn(~1.90) and a smaller extinction coefficientk(~0.92) than PVD ones in the visible wavelength range (400 to 800 nm), therefore modulating the surface reflection and the phase accumulation. The capability of PPD in printing both ultra-thin (~5 nm) composite films and highly reflective thicker film greatly benefit the design and construction of multilayered Fabry–Perot (FP) cavity structures to exhibit vivid and saturated colors. We demonstrated programmed printing of complex pictures of different color schemes at a high spatial resolution of ~6.5 μm by three-dimensionally modulating the top composite film geometries and dielectric spacer thicknesses (75 to 200 nm). Finally, PPD-based color picture printing is demonstrated on a wide range of substrates, including glass, PDMS, and plastic, proving its broad potential in future applications from security labeling to color displays.

     
    more » « less
  6. null (Ed.)
    Plasmonic chiral metamaterials have attracted broad research interest because of their potential applications in optical communication, biomedical diagnosis, polarization imaging, and circular dichroism spectroscopy. However, optical losses in plasmonic structures severely limit practical applications. Here, we present the design concept and experimental demonstration for highly efficient subwavelength-thick plasmonic chiral metamaterials with strong chirality. The proposed designs utilize plasmonic metasurfaces to control the phase and polarization of light and exploit anisotropic thin-film interference effects to enhance optical chirality while minimizing optical loss. Based on such design concepts, we demonstrated experimentally optical devices such as circular polarization filters with transmission efficiency up to 90% and extinction ratio >180, polarization converters with conversion efficiency up to 90%, as well as on-chip integrated microfilter arrays for full Stokes polarization detection with high accuracy over a broad wavelength range (3.5–5 μm). The proposed design concepts are applicable from near-infrared to Terahertz regions via structural engineering. 
    more » « less
  7. null (Ed.)
    Plasmonic chiral metamaterials have attracted broad research interest because of their potential applications in optical communication, biomedical diagnosis, polarization imaging, and circular dichroism spectroscopy. However, optical losses in plasmonic structures severely limit practical applications. Here, we present the design concept and experimental demonstration for highly efficient subwavelength-thick plasmonic chiral metamaterials with strong chirality. The proposed designs utilize plasmonic metasurfaces to control the phase and polarization of light and exploit anisotropic thin-film interference effects to enhance optical chirality while minimizing optical loss. Based on such design concepts, we demonstrated experimentally optical devices such as circular polarization filters with transmission efficiency up to 90% and extinction ratio >180, polarization converters with conversion efficiency up to 90%, as well as on-chip integrated microfilter arrays for full Stokes polarization detection with high accuracy over a broad wavelength range (3.5–5 μm). The proposed design concepts are applicable from near-infrared to Terahertz regions via structural engineering. 
    more » « less
  8. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P.S. ; Vaughan, J. Wortman (Ed.)