Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Dynamic covalent Diels–Alder chemistry was combined with multiwalled carbon nanotube (CNT) reinforcement to develop strong, tough and conductive dynamic materials. Unlike other approaches to functionalizing CNTs, this approach uses Diels–Alder bonds between diene pendant groups on the polymer and the CNT surface πσ bonds acting as dienophiles. Experimental and simulation data align with the CNT reinforcement coming from dynamic covalent bonds between the matrix and the CNT surface. The addition of just 0.9 wt% CNTs can lead to an almost 3-fold increase in strength and 6–7 order of magnitude increases in electrical conductivity, and materials with 0.45 wt% CNTs show excellent strength, self-healing and conductivity.more » « less
-
null (Ed.)Dynamically crosslinked polymers and their composites have tremendous potential in the development of the next round of advanced materials for aerospace, sensing, and tribological applications. These materials have self-healing properties, or the ability to recover from scratches and cuts. Applied forces can have a significant impact on the mechanical properties of non-dynamic systems. However, the impacts of forces on the self-healing ability of dynamically bonded systems are still poorly understood. Here, we used a combined computational and experimental approach to study the impact of mechanical forces on the self-healing of a model dynamic covalent crosslinked polymer system. Surprisingly, the mechanical history of the materials has a distinct impact on the observed recovery of the mechanical properties after the material is damaged. Higher compressive forces and sustained forces lead to greater self-healing, indicating that mechanical forces can promote dynamic chemistry. The atomistic details provided in molecular dynamics simulations are used to understand the mechanism with both non-covalent and dynamic covalent linkage responses to the external loading. Finite element analysis is performed to bridge the gap between experiments and simulations and to further explore the underlying mechanisms. The self-healing behavior of the crosslinked polymers is explained using reaction rate theory, with the applied force proposed to lower the energy barrier to bond exchange. Overall, our study provides fundamental understanding of how and why the self-healing of cross-linked polymers is affected by a compressive force and the force application time.more » « less
-
Recent progress on stretchable, tough dual-dynamic polymer single networks (SN) and interpenetrated networks (IPN) has broadened the potential applications of dynamic polymers. However, the impact of macromolecular structure on the material mechanics remains poorly understood. Here, rapidly exchanging hydrogen bonds and thermoresponsive Diels–Alder bonds were included into molecularly engineered interpenetrated network materials. RAFT polymerization was used to make well-defined polymers with control over macromolecular architecture. The IPN materials were assessed by gel permeation chromatography, differential scanning calorimetry, tensile testing and rheology. The mechanical properties of these IPN materials can be tuned by varying the crosslinker content and chain length. All materials are elastic and have dynamic behavior at both ambient temperature and elevated temperature (90 °C), owing to the presence of the dual dynamic noncovalent and covalent bonds. 100% self-healing recovery was achieved and a maximum stress level of up to 6 MPa was obtained. The data suggested the material's healing properties are inversely proportional to the content of the crosslinker or the degree of polymerization at both room and elevated temperature. The thermoresponsive crosslinker restricted deformation to some extent in an ambient environment but gave excellent malleability upon heating. The underlying mechanism was explored by the computational simulations. Furthermore, a single network material with the same crosslinker content and degree of polymerization as the IPN was made. The SN was substantially weaker than the comparable IPN material.more » « less