skip to main content

Search for: All records

Creators/Authors contains: "Yoo, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vertical heterojunction NiO/β n-Ga 2 O/n + Ga 2 O 3 rectifiers employing NiO layer extension beyond the rectifying contact for edge termination exhibit breakdown voltages (V B ) up to 4.7 kV with a power figure-of-merits, V B 2 /R ON of 2 GW·cm −2 , where R ON is the on-state resistance (11.3 mΩ cm 2 ). Conventional rectifiers fabricated on the same wafers without NiO showed V B values of 840 V and a power figure-of-merit of 0.11 GW cm −2 . Optimization of the design of the two-layer NiO doping and thickness and also the extension beyond the rectifying contact by TCAD showed that the peak electric field at the edge of the rectifying contact could be significantly reduced. The leakage current density before breakdown was 144 mA/cm 2 , the forward current density was 0.8 kA/cm 2 at 12 V, and the turn-on voltage was in the range of 2.2–2.4 V compared to 0.8 V without NiO. Transmission electron microscopy showed sharp interfaces between NiO and epitaxial Ga 2 O 3 and a small amount of disorder from the sputtering process.
  2. Abstract The band alignment of sputtered NiO on β -Ga 2 O 3 was measured by x-ray photoelectron spectroscopy for post-deposition annealing temperatures up to 600 °C. The band alignment is type II, staggered gap in all cases, with the magnitude of the conduction and valence band offsets increasing monotonically with annealing temperature. For the as-deposited heterojunction, Δ E V = −0.9 eV and Δ E C = 0.2 eV, while after 600 °C annealing the corresponding values are Δ E V = −3.0 eV and Δ E C = 2.12 eV. The bandgap of the NiO was reduced from 3.90 eV as-deposited to 3.72 eV after 600 °C annealing, which accounts for most of the absolute change in Δ E V −Δ E C . Differences in thermal budget may be at least partially responsible for the large spread in band offsets reported in the literature for this heterojunction. Other reasons could include interfacial disorder and contamination. Differential charging, which could shift peaks by different amounts and could potentially be a large source of error, was not observed in our samples.
  3. β-Ga2O3 is an emerging ultra-wide bandgap semiconductor, holding a tremendous potential for power-switching devices for next-generation high power electronics. The performance of such devices strongly relies on the precise control of electrical properties of β-Ga2O3, which can be achieved by implantation of dopant ions. However, a detailed understanding of the impact of ion implantation on the structure of β-Ga2O3 remains elusive. Here, using aberration-corrected scanning transmission electron microscopy, we investigate the nature of structural damage in ion-implanted β-Ga2O3 and its recovery upon heat treatment with the atomic-scale spatial resolution. We reveal that upon Sn ion implantation, Ga2O3 films undergo a phase transformation from the monoclinic β-phase to the defective cubic spinel γ-phase, which contains high-density antiphase boundaries. Using the planar defect models proposed for the γ-Al2O3, which has the same space group as β-Ga2O3, and atomic-resolution microscopy images, we identify that the observed antiphase boundaries are the {100}1/4 ⟨110⟩ type in cubic structure. We show that post-implantation annealing at 1100 °C under the N2 atmosphere effectively recovers the β-phase; however, nano-sized voids retained within the β-phase structure and a γ-phase surface layer are identified as remanent damage. Our results offer an atomic-scale insight into the structural evolution of β-Ga2O3 under ion implantationmore »and high-temperature annealing, which is key to the optimization of semiconductor processing conditions for relevant device design and the theoretical understanding of defect formation and phase stability.

    « less
  4. There is increasing interest in the alpha polytype of Ga2O3 because of its even larger bandgap than the more studied beta polytype, but in common with the latter, there is no viable p-type doping technology. One option is to use p-type oxides to realize heterojunctions and NiO is one of the candidate oxides. The band alignment of sputtered NiO on α-Ga2O3 remains type II, staggered gap for annealing temperatures up to 600 °C, showing that this is a viable approach for hole injection in power electronic devices based on the alpha polytype of Ga2O3. The magnitude of both the conduction and valence band offsets increases with temperature up to 500 °C, but then is stable to 600 °C. For the as-deposited NiO/α-Ga2O3 heterojunction, ΔEV = −2.8 and ΔEC = 1.6 eV, while after 600 °C annealing the corresponding values are ΔEV = −4.4 and ΔEC = 3.02 eV. These values are 1−2 eV larger than for the NiO/β-Ga2O3 heterojunction.

    Free, publicly-accessible full text available November 15, 2023
  5. NiO is a promising alternative to p-GaN as a hole injection layer for normally-off lateral transistors or low on-resistance vertical heterojunction rectifiers. The valence band offsets of sputtered NiO on c-plane, vertical geometry homoepitaxial GaN structures were measured by x-ray photoelectron spectroscopy as a function of annealing temperatures to 600 °C. This allowed determination of the band alignment from the measured bandgap of NiO. This alignment was type II, staggered gap for both as-deposited and annealed samples. For as-deposited heterojunction, ΔEV = 2.89 eV and ΔEC = −2.39 eV, while for all the annealed samples, ΔEVvalues were in the range of 3.2–3.4 eV and ΔECvalues were in the range of −(2.87–3.05) eV. The bandgap of NiO was reduced from 3.90 eV as-deposited to 3.72 eV after 600 °C annealing, which accounts for much of the absolute change in ΔEV − ΔEC. At least some of the spread in reported band offsets for the NiO/GaN system may arise from differences in their thermal history.