skip to main content


Title: Structural anisotropy in Sb thin films

Sb thin films have attracted wide interest due to their tunable band structure, topological phases, high electron mobility, and thermoelectric properties. We successfully grow epitaxial Sb thin films on a closely lattice-matched GaSb(001) surface by molecular beam epitaxy. We find a novel anisotropic directional dependence on their structural, morphological, and electronic properties. The origin of the anisotropic features is elucidated using first-principles density functional theory (DFT) calculations. The growth regime of crystalline and amorphous Sb thin films was determined by mapping the surface reconstruction phase diagram of the GaSb(001) surface under Sb2 flux, with confirmation of structural characterizations. Crystalline Sb thin films show a rhombohedral crystal structure along the rhombohedral (211) surface orientation parallel to the cubic (001) surface orientation of the GaSb substrate. At this coherent interface, Sb atoms are aligned with the GaSb lattice along the [1̄10] crystallographic direction but are not aligned well along the [110] crystallographic direction, which results in anisotropic features in reflection of high-energy electron diffraction patterns, misfit dislocation formation, surface morphology, and transport properties. Our DFT calculations show that the preferential orientation of the rhombohedral Sb (211) plane may originate from the GaSb surface, where Sb atoms align with the Ga and Sb atoms on the reconstructed surface. The formation energy calculations confirm the stability of the experimentally observed structures. Our results provide optimal film growth conditions for further studies of novel properties of Bi1−xSbx thin films with similar lattice parameters and an identical crystal structure, as well as functional heterostructures of them with III–V semiconductor layers along the (001) surface orientation, supported by a theoretical understanding of the anisotropic film orientation.

 
more » « less
Award ID(s):
2152168
PAR ID:
10516725
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
APL Materials
Volume:
12
Issue:
1
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MnO(001) thin films were grown on commercial MgO(001) substrates at 520 °C by reactive molecular beam epitaxy (MBE) using Mn vapor and O2-seeded supersonic molecular beams (SMBs) both with and without radio frequency (RF) plasma excitation. For comparison, MnO(001) films were grown by reactive MBE using O2 from a leak valve. X-ray photoelectron spectroscopy confirmed the Mn2+ oxidation state and 10%–15% excess oxygen near the growth surface. Reflection high-energy electron diffraction and x-ray diffraction evidenced that the films were rock salt cubic MnO with very strong (001) orientation. High-angle annular dark field scanning transmission electron microscopy with energy-dispersive x-ray spectroscopy demonstrated abrupt MnO/MgO interfaces and indicated [(001)MnO||(001)MgO] epitaxial growth. Ex situ atomic force microscopy of films deposited without RF excitation revealed smooth growth surfaces. An SMB-grown MnO(001) film was converted to Mn3O4 with strong (110) orientation by post-growth exposure to an RF-discharge (RFD) SMB source providing O atoms; the surface of the resultant film contained elongated pits aligned with the MgO110 directions. In contrast, using the RFD-SMB source for growth resulted in MnO(001) films with elongated growth pits and square pyramidal hillocks aligned along the MgO110 and 100 directions, respectively.

     
    more » « less
  2. The antimony selenide thin film solar cells technology becomes promising due to its excellent anisotropic charge transport and brilliant light absorption capability. Especially, the device performance heavily relies on the vertically oriented Sb2Se3grain to promote photoexcited carrier transport. However, crystalline orientation control has been a major issue in Sb2Se3thin film solar cells. Herein, a new strategy has been developed to tailor the crystal growth of Sb2Se3ribbons perpendicular to the substrate by using the structural heterostructured CdS buffer layer. The heterostructured CdS buffer layer is formed by a dual layer of CdS nanorods and nanoparticles. The hexagonal CdS nanorods passivated by a thin cubic CdS nanoparticle layer can promote [211] and [221] directional growth of Sb2Se3ribbons using a close space sublimation approach. The improved buffer/absorber interface, reduced interface defects, and recombination loss contribute to the improved device efficiency of 7.16%. This new structural heterostructured CdS buffer layer can regulate Sb2Se3nanoribbons crystal growth and pave the way to further improve the low‐dimensional chalcogenide thin film solar cell efficiency.

     
    more » « less
  3. Glycine, the simplest amino acid, is considered a promising functional biomaterial owing to its excellent biocompatibility and strong out-of-plane piezoelectricity. Practical applications require glycine films to be manufactured with their strong piezoelectric polar 〈001〉 direction aligned with the film thickness. Based on the recently-developed solidification approach of a polyvinyl alcohol (PVA) and glycine aqueous solution, in this work, we demonstrate that the crystal orientation of the as-synthesized film is determined by the orientation of glycine crystal nuclei. By controlling the local nucleation kinetics via surface curvature tuning, we shifted the nucleation site from the edge to the middle of the liquid film, and thereby aligned the 〈001〉 direction vertically. As a result, the PVA–glycine–PVA sandwich film exhibits the highest aver-age piezoelectric coefficient d 33 of 6.13 ± 1.13 pC N −1 . This work demonstrates a promising kinetic approach to achieve crystallization and property control in a scalable biocrystal manufacturing process. 
    more » « less
  4. Abstract

    Langmuir–Blodgett (LB) film deposition gives an opportunity to control the packing density and orientation of anisotropic nanoparticles at a monolayer level, allowing accurate characterization of their anisotropic material properties. The uniaxial deposition of rod‐shaped cellulose nanocrystals (CNCs) over a macroscopically large area is achieved by aligning the long axis of CNCs on the LB trough with the direction of the maximum drag force within the meniscus during the vertical pulling of the substrate from the LB trough. On the uniaxially‐aligned LB films, anisotropic linear and non‐linear optical properties of CNCs are obtained using Mueller matrix spectroscopy and sum frequency generation spectroscopy, respectively, and explained with time‐dependent density functional theory calculations. Also, the frictional anisotropy of the LB film is measured using atomic force microscopy and explained theoretically. The findings of this study will be valuable for preparation of anisotropic nanoparticle thin films with uniform arrangements and utilization of their anisotropic material properties.

     
    more » « less
  5. Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics. 
    more » « less