skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "You, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here we report the modelling of thermally initiated RAFT step-growth polymerization kinetics of maleimide and acrylate monomers with bifunctional RAFT agents bearing tertiary carboxyalkyl-stabilized fragmentable R groups. 
    more » « less
    Free, publicly-accessible full text available January 14, 2026
  2. Here, we report the modelling of photo-mediated RAFT step-growth polymerization kinetics of maleimide and acrylate monomers with bifunctional RAFT agents bearing tertiary carboxyalkyl stabilized fragementable R groups. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Photomediated reversible addition fragmentation chain transfer (RAFT) step‐growth polymerization is performed using a trithiocarbonate‐based chain transfer agent (CTA) and acrylate‐based monomers both with and without a photocatalyst. The versatility of photo‐mediated RAFT step‐growth is demonstrated by one‐pot synthesis of a graft copolymer via sequential monomer addition. Furthermore, oxygen‐tolerant photo‐mediated RAFT step‐growth is demonstrated, facilitated by the appropriate selection of photocatalyst and solvent pair (zinc tetraphenyl porphyrin [ZnTPP] and dimethyl sulfoxide [DMSO]), enabling ultralow volume polymerization under open‐air conditions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Here we report one-pot stimuli-responsive tandem degradation of a graft copolymer with alternating backbone functionalities. 
    more » « less
  5. RAFT step-growth polymerizationviathe Z-group approach was developed, offering a facile method to prepare deconstructable (multiblock) polymers by combining RAFT chain-growth polymerization and RAFT interchange. 
    more » « less
  6. Free, publicly-accessible full text available May 24, 2025
  7. Abstract Breath ammonia is an essential biomarker for patients with many chronic illnesses, such as chronic kidney disease (CKD), chronic liver disease (CLD), urea cycle disorders (UCD), and hepatic encephalopathy. However, existing breath ammonia sensors fail to compensate for the impact of breath humidity and complex breathing motions associated with a human breath sample. Here, a multimodal breath sensing system is presented that integrates an ammonia sensor based on a thermally cleaved conjugated polymer, a humidity sensor based on reduced graphene oxide (rGO), and a breath dynamics sensor based on a 3D folded strain‐responsive mesostructure. The miniaturized construction and module‐based configuration offer flexible integration with a broad range of masks. Experimental results present the capabilities of the system in continuously detecting diagnostic ranges of breath ammonia under real, humid breath conditions with sufficient sensing accuracy and selectivity over 3 weeks. A machine‐learning algorithm based on K‐means clustering decodes multimodal signals collected from the breath sensor to differentiate between healthy and diseased breath concentrations of ammonia. The on‐body test highlights the operational simplicity and practicality of the system for noninvasively tracing ammonia biomarkers. 
    more » « less