skip to main content

Search for: All records

Creators/Authors contains: "Yu, Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2023
  2. Free, publicly-accessible full text available September 21, 2023
  3. Free, publicly-accessible full text available June 22, 2023
  4. Free, publicly-accessible full text available August 3, 2023
  5. Free, publicly-accessible full text available January 27, 2023
  6. Shift workers who are essential contributors to our society, face high risks of poor health and wellbeing. To help with their problems, we collected and analyzed physiological and behavioral wearable sensor data from shift working nurses and doctors, as well as their behavioral questionnaire data and their self-reported daily health and wellbeing labels, including alertness, happiness, energy, health, and stress. We found the similarities and differences between the responses of nurses and doctors. According to the differences in self-reported health and wellbeing labels between nurses and doctors, and the correlations among their labels, we proposed a job-role based multitask and multilabel deep learning model, where we modeled physiological and behavioral data for nurses and doctors simultaneously to predict participants’ next day’s multidimensional self-reported health and wellbeing status. Our model showed significantly better performances than baseline models and previous state-of-the-art models in the evaluations of binary/3-class classification and regression prediction tasks. We also found features related to heart rate, sleep, and work shift contributed to shift workers’ health and wellbeing.
  7. Background Shift work sleep disorders (SWSDs) are associated with the high turnover rates of nurses, and are considered a major medical safety issue. However, initial management can be hampered by insufficient awareness. In recent years, it has become possible to visualize, collect, and analyze the work-life balance of health care workers with irregular sleeping and working habits using wearable sensors that can continuously monitor biometric data under real-life settings. In addition, internet-based cognitive behavioral therapy for psychiatric disorders has been shown to be effective. Application of wearable sensors and machine learning may potentially enhance the beneficial effects of internet-based cognitive behavioral therapy. Objective In this study, we aim to develop and evaluate the effect of a new internet-based cognitive behavioral therapy for SWSD (iCBTS). This system includes current methods such as medical sleep advice, as well as machine learning well-being prediction to improve the sleep durations of shift workers and prevent declines in their well-being. Methods This study consists of two phases: (1) preliminary data collection and machine learning for well-being prediction; (2) intervention and evaluation of iCBTS for SWSD. Shift workers in the intensive care unit at Mie University Hospital will wear a wearable sensor that collects biometric datamore »and answer daily questionnaires regarding their well-being. They will subsequently be provided with an iCBTS app for 4 weeks. Sleep and well-being measurements between baseline and the intervention period will be compared. Results Recruitment for phase 1 ended in October 2019. Recruitment for phase 2 has started in October 2020. Preliminary results are expected to be available by summer 2021. Conclusions iCBTS empowered with well-being prediction is expected to improve the sleep durations of shift workers, thereby enhancing their overall well-being. Findings of this study will reveal the potential of this system for improving sleep disorders among shift workers. Trial Registration UMIN Clinical Trials Registry UMIN000036122 (phase 1), UMIN000040547 (phase 2); https://tinyurl.com/dkfmmmje, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046284 International Registered Report Identifier (IRRID) DERR1-10.2196/24799« less