skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Jiangbo Gabe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-quality strategic planning of autonomous mobility-on-demand (AMOD) systems is critical for the success of the subsequent phases of AMOD system implementation. To assist in strategic AMOD planning, we propose a dynamic and flexible flow-based model of an AMOD system. The proposed model is computationally fast while capturing the state transitions of two coordinated flows (i.e. co-flows): the AMOD service fleet vehicles and AMOD customers. Capturing important quantity dynamics and conservations through a system of ordinary differential equations, the model can economically respond to a large number and a wide range of scenario-testing requests. The paper illustrates the model efficacy through a basic example and a more realistic case study. The case study envisions replacing Manhattan's existing taxi service with a hypothetical AMOD system. The results show that even a simple co-flow model can robustly predict the systemwide AMOD dynamics and support the strategic planning of AMOD systems. 
    more » « less
  2. We propose using surface and aerial shared autonomous electric vehicles (SAEVs) to improve the resilience of infrastructure and communities, or SAEV-R. In disruptive events, SAEVs can be temporarily deployed to evacuate and rescue at-risk populations, provide essential supplies and services to vulnerable households, and transport repair crews and equipment. We present a modeling framework for feasibility analysis and strategic planning associated with deploying SAEVs for disaster relief. The framework guides our examination of three scenarios: a hurricane-induced power outage, a pandemic-affected vulnerable population, and earthquake-damaged infrastructure. The results demonstrate the flexibility of the proposed framework and showcase the potential and versatility of SAEV-R systems to improve resilience. 
    more » « less