Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Manufacturing of ceramics is challenging due to their low toughness and high hardness. Additive Manufacturing (AM) has been explored to create complex ceramic structures, but current techniques face a tradeoff between precisely controlled feature sizes and high shrinkage at the microscales. Here, we introduce 3D‐AJP, a novel freeform ceramic fabrication method that enables highly complex microscale 3D ceramic architectures—such as micropillars, spirals, and lattices—with minimal shrinkage and no auxiliary support. Using a near‐binder‐free nanoparticle ink in an Aerosol Jet (AJ) 3D printer, our approach precisely controls feature sizes down to 20 µm with aspect ratios up to 30:1. The resulting structures exhibit exceptionally low linear shrinkage of 2‐6% upon sintering, spanning five orders of magnitude in length scale. Bi‐material 3D architectures (zinc oxide/zirconia, zinc oxide/titania, titania/zirconia) and hybrid ceramics further demonstrate the technique’s versatility. We showcase two key applications. First, 3D ceramic photocatalysts improve water purification performance, achieving a 400% increase in photocatalytic efficiency compared to bulk ceramics. Second, we develop a highly sensitive Her2 biomarker sensor for breast cancer detection, achieving a 22‐second response time and a record‐low detection limit of 0.0193 fm. Our technique will lead to high‐performance sensing, filtration, microelectronics packaging, catalysis, and tissue regeneration technologies.more » « less
-
Abstract Sensing of clinically relevant biomolecules such as neurotransmitters at low concentrations can enable an early detection and treatment of a range of diseases. Several nanostructures are being explored by researchers to detect biomolecules at sensitivities beyond the picomolar range. It is recognized, however, that nanostructuring of surfaces alone is not sufficient to enhance sensor sensitivities down to the femtomolar level. In this paper, we break this barrier/limit by introducing a sensing platform that uses a multi-length-scale electrode architecture consisting of 3D printed silver micropillars decorated with graphene nanoflakes and use it to demonstrate the detection of dopamine at a limit-of-detection of 500 attomoles. The graphene provides a high surface area at nanoscale, while micropillar array accelerates the interaction of diffusing analyte molecules with the electrode at low concentrations. The hierarchical electrode architecture introduced in this work opens the possibility of detecting biomolecules at ultralow concentrations.more » « less
-
A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation.more » « less
An official website of the United States government
