skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deposition of Horizontally Stacked Zn Crystals on Single Layer 1T‐VSe 2 for Dendrite‐Free Zn Metal Anodes
Award ID(s):
2005250
PAR ID:
10392226
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
47
ISSN:
1614-6832
Page Range / eLocation ID:
2202983
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The zinc-ion battery (ZIB) has been a system of particular interest in the research community as a possible alternative to lithium-ion batteries (LIB), and much work has been devoted to finding a suitable host material. In this article, monoclinic V 2 (PO 4 ) 3 is investigated as a host material for reversible insertion of Zn 2+ . Initial chemical assessment via a facile microwave-assisted chemical insertion method indicates the possibility of Zn 2+ insertion into the host. Electrochemical assessment, however, exhibits a significant capacity fade. In-depth analysis on the average and local structure of Li 3 V 2 (PO 4 ) 3 , the empty host V 2 (PO 4 ) 3 , and the Zn-inserted V 2 (PO 4 ) 3 reveals that heavy distortion is induced upon Zn 2+ insertion into the V 2 (PO 4 ) 3 framework, which is believed to be a result of a strong host–guest interaction jeopardizing the structural integrity. This is further supported by the dissolution of most of the material during the chemical oxidation of the Zn-inserted V 2 (PO 4 ) 3 . The underlying structural inadequacy poses difficulties for monoclinic V 2 (PO 4 ) 3 to be a viable reversible host for Zn-ion batteries. This work suggests that not only the electrostatic repulsions of multivalent ions in a structure during diffusion, but also the structural stability of the host upon insertion of multivalent ions, must be considered for a better design of suitable host materials for multivalent-ion batteries. 
    more » « less
  2. Two new compounds, Zn2FeSbO6 and Zn2MnSbO6, have been synthesized under high-pressure and high-temperature conditions. The synthesis, single-crystal and powder X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), optical second harmonic generation (SHG), and magnetic and heat capacity measurements were carried out for both compounds and are described. The lattice parameters are a = 5.17754(6) Å and c = 13.80045(16) Å for Zn2FeSbO6 and a = 5.1889(10) Å and c = 14.0418(3) Å for Zn2MnSbO6. Single-crystal X-ray diffraction analyses indicate that Zn2FeSbO6 consists of a cocrystal of superimposed Ni3TeO6 (NTO) and ordered ilmenite (OIL) components with a ratio of approximately 2:1 and Zn2MnSbO6 contains two nearly identical, but noncrystallographically related, OIL components in a ratio of approximately 6:1. 
    more » « less