Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We report measurements of production cross sections for , , , , , , , , , , , , , , and in collisions at a center-of-mass energy near 10.58 GeV. The data were recorded by the Belle experiment, consisting of at 10.58 GeV and at 10.52 GeV. Production cross sections are extracted as a function of the fractional hadron momentum . The measurements are compared to Monte Carlo generator predictions with various fragmentation settings, including those that have increased fragmentation into vector mesons over pseudoscalar mesons. The cross sections measured for light hadrons are consistent with no additional increase of vector over pseudoscalar mesons. The charmed-meson cross sections are compared to earlier measurements—when available—including older Belle results, which they supersede. They are in agreement before application of an improved initial-state radiation correction procedure that causes slight changes in their shapes. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            We perform an angular analysis of the decay for the dielectron mass squared, , range of using the full Belle dataset in the and channels, incorporating new methods of electron identification to improve the statistical power of the dataset. This analysis is sensitive to contributions from right-handed currents from physics beyond the Standard Model by constraining the Wilson coefficients . We perform a fit to the differential decay rate and measure the imaginary component of the transversality amplitude to be , and the transverse asymmetry to be , with and fixed to the Standard Model values. The resulting constraints on the value of are consistent with the Standard Model within a confidence interval. Published by the American Physical Society2024more » « less
- 
            We report the results of the first search for Standard Model and baryon-number-violating two-body decays of the neutral mesons to and using of data collected at the resonance with the Belle detector at the KEKB asymmetric-energy collider. We observe no evidence of signal from any such decays and set 95% confidence-level upper limits on the products of and branching fractions for these two-body decays with in the range between and . Published by the American Physical Society2024more » « less
- 
            A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ decays. We use a combined data set from the Belle and Belle II experiments, which studye+e−collisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            A<sc>bstract</sc> Using data samples of 983.0 fb−1and 427.9 fb−1accumulated with the Belle and Belle II detectors operating at the KEKB and SuperKEKB asymmetric-energye+e−colliders, singly Cabibbo-suppressed decays$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ are observed for the first time. The ratios of branching fractions of$$ {\Xi}_c^{+}\to p{K}_S^0 $$ ,$$ {\Xi}_c^{+}\to \Lambda {\pi}^{+} $$ , and$$ {\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+} $$ relative to that of$$ {\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+} $$ are measured to be$$ {\displaystyle \begin{array}{c}\frac{\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(2.47\pm 0.16\pm 0.07\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(1.56\pm 0.14\pm 0.09\right)\%,\\ {}\frac{\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)}{\mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)}=\left(4.13\pm 0.26\pm 0.22\right)\%.\end{array}} $$ Multiplying these values by the branching fraction of the normalization channel,$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right)=\left(2.9\pm 1.3\right)\% $$ , the absolute branching fractions are determined to be$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^{+}\to p{K}_S^0\right)=\left(7.16\pm 0.46\pm 0.20\pm 3.21\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to \Lambda {\pi}^{+}\right)=\left(4.52\pm 0.41\pm 0.26\pm 2.03\right)\times {10}^{-4},\\ {}\mathcal{B}\left({\Xi}_c^{+}\to {\Sigma}^0{\pi}^{+}\right)=\left(1.20\pm 0.08\pm 0.07\pm 0.54\right)\times {10}^{-3}.\end{array}} $$ The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty in$$ \mathcal{B}\left({\Xi}_c^{+}\to {\Xi}^{-}{\pi}^{+}{\pi}^{+}\right) $$ .more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+e−collider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            We measure the branching fraction of the decay using data collected with the Belle II detector at the SuperKEKB collider. The data contain meson pairs produced in energy-asymmetric collisions at the resonance. The measured branching fraction , where the first uncertainty is statistical and the second is systematic, is more precise than previous results and constitutes the first observation of the decay with a significance of 6.5 standard deviations. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            We report a measurement of the cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an data sample corresponding to of integrated luminosity, collected at a center-of-mass energy at or near the resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in events, which involve a decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the and resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62–1.80 GeV energy range yield for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by 2.5 standard deviations from the most precise current determination. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract A series of data samples was collected with the Belle II detector at the SuperKEKB collider from March 2019 to June 2022. We determine the integrated luminosities of these data samples using three distinct methodologies involving Bhabha (), digamma (), and dimuon () events. The total integrated luminosity obtained with Bhabha, digamma, and dimuon events is (426.88 ± 0.03 ± 2.61) fb−1, (429.28 ± 0.03 ± 2.62) fb−1, and (423.99 ± 0.04 ± 3.83) fb−1, where the first uncertainties are statistical and the second are systematic. The resulting total integrated luminosity obtained from the combination of the three methods is (427.87 ± 2.01) fb−1.more » « lessFree, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
