skip to main content


Search for: All records

Creators/Authors contains: "Yuan, Zhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The chiral induced spin selectivity (CISS) effect, in which the structural chirality of a material determines the preference for the transmission of electrons with one spin orientation over that of the other, is emerging as a design principle for creating next-generation spintronic devices. CISS implies that the spin preference of chiral structures persists upon injection of pure spin currents and can act as a spin analyzer without the need for a ferromagnet. Here, we report an anomalous spin current absorption in chiral metal oxides that manifests a colossal anisotropic nonlocal Gilbert damping with a maximum-to-minimum ratio of up to 1000%. A twofold symmetry of the damping is shown to result from differential spin transmission and backscattering that arise from chirality-induced spin splitting along the chiral axis. These studies reveal the rich interplay of chirality and spin dynamics and identify how chiral materials can be implemented to direct the transport of spin current.

     
    more » « less
    Free, publicly-accessible full text available May 3, 2025
  2. null (Ed.)
  3. Abstract

    The angular dependence of the microwave-driven spin rectification (SR) effect in single crystalline Co0.5Fe0.5alloy film is systematically investigated. Due to the strong current-orientation dependent anisotropic magnetoresistance (AMR), the SR effects in CoFe film strongly deviate from the ordinary sin 2φMcosφMrelation withφMdefined as the magnetization angle away from the current. A giant Gilbert damping anisotropy in the CoFe film with a maximum–minimum ratio of 520% is observed, which can impose a strong anisotropy onto magnetic susceptibility. The observed unusual angular dependence can be well explained by the theory including current-orientation dependent AMR and anisotropic magnetic susceptibility. Our work also suggests that the strong current-orientation dependent AMR in single crystalline CoFe film could exist up to the gigahertz frequency range.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high‐performance gas separations due to their atomic thickness, large‐scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas‐sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas‐separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas‐separation applications of nanoporous atomically thin membranes.

     
    more » « less
  6. Abstract

    Single‐layer graphene containing molecular‐sized in‐plane pores is regarded as a promising membrane material for high‐performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching‐based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade‐off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single‐layer graphene membranes with the highest H2/CH4separation performances recorded to date (H2permeance > 4000 GPU and H2/CH4selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non‐covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single‐layer graphene exploits its tremendous potential as high‐performance gas‐sieving membranes.

     
    more » « less