skip to main content


Search for: All records

Creators/Authors contains: "Yuen, Henry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 10, 2025
  2. Tauman Kalai, Yael (Ed.)
    We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary and has to decide whether it satisfies some property. In addition to containing the standard quantum query complexity model (where the unitary encodes a binary string) as a special case, this model contains "inherently quantum"; problems that have no classical analogue. Characterizing the query complexity of these problems requires new algorithmic techniques and lower bound methods. Our main contribution is a generalized polynomial method for unitary property testing problems. By leveraging connections with invariant theory, we apply this method to obtain lower bounds on problems such as determining recurrence times of unitaries, approximating the dimension of a marked subspace, and approximating the entanglement entropy of a marked state. We also present a unitary property testing-based approach towards an oracle separation between QMA and QMA(2), a long standing question in quantum complexity theory. 
    more » « less
  3. We study the parallel repetition of one-round games involving players that can use quantum entanglement. A major open question in this area is whether parallel repetition reduces the entangled value of a game at an exponential rate --- in other words, does an analogue of Raz's parallel repetition theorem hold for games with players sharing quantum entanglement? Previous results only apply to special classes of games. We introduce a class of games we call anchored. We then introduce a simple transformation on games called \emph{anchoring}, inspired in part by the Feige-Kilian transformation, that turns \emph{any} (multiplayer) game into an anchored game. Unlike the Feige-Kilian transformation, our anchoring transformation is completeness preserving. We prove an exponential-decay parallel repetition theorem for anchored games that involve any number of entangled players. We also prove a threshold version of our parallel repetition theorem for anchored games. Together, our parallel repetition theorems and anchoring transformation provide the first hardness amplification techniques for general entangled games. We give an application to the games version of the Quantum PCP Conjecture. 
    more » « less
  4. In a recent work, Moshkovitz [FOCS '14] presented a transformation on two-player games called ``fortification'', and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an \emph{analytic reformulation} of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show \emph{any} game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, two problems which have recently received much attention. An important component of our work is a variant of the fortification transformation, called ``ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting. 
    more » « less