skip to main content


Search for: All records

Creators/Authors contains: "Zeldovich, Nickolai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. K2 is a new architecture and verification approach for hardware security modules (HSMs). The K2 architecture's rigid separation between I/O, storage, and computation over secret state enables modular proofs and allows for software development and verification independent of hardware development and verification while still providing correctness and security guarantees about the composed system. For a key step of verification, K2 introduces a new tool called Chroniton that automatically proves timing properties of software running on a particular hardware implementation, ensuring the lack of timing side channels at a cycle-accurate level. 
    more » « less
    Free, publicly-accessible full text available October 23, 2024
  2. Free, publicly-accessible full text available October 23, 2024
  3. Grove is a concurrent separation logic library for verifying distributed systems. Grove is the first to handle time-based leases, including their interaction with reconfiguration, crash recovery, thread-level concurrency, and unreliable networks. This paper uses Grove to verify several distributed system components written in Go, including GroveKV, a realistic distributed multi-threaded key-value store. GroveKV supports reconfiguration, primary/backup replication, and crash recovery, and uses leases to execute read-only requests on any replica. GroveKV achieves high performance (67-73% of Redis on a single core), scales with more cores and more backup replicas (achieving about 2× the throughput when going from 1 to 3 servers), and can safely execute reads while reconfiguring. 
    more » « less
    Free, publicly-accessible full text available October 23, 2024
  4. Multi-version concurrency control (MVCC) is a widely used, sophisticated approach for handling concurrent transactions. vMVCC is the first MVCC-based transaction library that comes with a machine-checked proof of correctness, providing clients with a guarantee that it will correctly handle all transactions despite a complicated design and implementation that might otherwise be error-prone. vMVCC is implemented in Go, stores data in memory, and uses several optimizations, such as RDTSC-based timestamps, to achieve high performance (25–96% the throughput of Silo, a state-of-the-art in-memory database, for YCSB and TPC-C workloads). Formally specifying and verifying vMVCC required adopting advanced proof techniques, such as logical atomicity and prophecy variables, owing to the fact that MVCC transactions can linearize at timestamp generation prior to transaction execution. 
    more » « less
  5. Knox is a new framework that enables developers to build hardware security modules (HSMs) with high assurance through formal verification. The goal is to rule out all hardware bugs, software bugs, and timing side channels. Knox's approach is to relate an implementation's wire-level behavior to a functional specification stated in terms of method calls and return values with a new definition called information-preserving refinement (IPR). This definition captures the notion that the HSM implements its functional specification, and that it leaks no additional information through its wire-level behavior. The Knox framework provides support for writing specifications, importing HSM implementations written in Verilog and C code, and proving IPR using a combination of lightweight annotations and interactive proofs. To evaluate the IPR definition and the Knox framework, we verified three simple HSMs, including an RFC 6238-compliant TOTP token. The TOTP token is written in 2950 lines of Verilog and 360 lines of C and assembly. Its behavior is captured in a succinct specification: aside from the definition of the TOTP algorithm, the spec is only 10 lines of code. In all three case studies, verification covers entire hardware and software stacks and rules out hardware/software bugs and timing side channels. 
    more » « less
  6. This paper develops a new approach to verifying a performant file system that isolates crash safety and concurrency reasoning to a transaction system that gives atomic access to the disk, so that the rest of the file system can be verified with sequential reasoning. We demonstrate this approach in DaisyNFS, a Network File System (NFS) server written in Go that runs on top of a disk. DaisyNFS uses GoTxn, a new verified, concurrent transaction system that extends GoJournal with two-phase locking and an allocator. The transaction system's specification formalizes under what conditions transactions can be verified with only sequential reasoning, and comes with a mechanized proof in Coq that connects the specification to the implementation. As evidence that proofs enjoy sequential reasoning, DaisyNFS uses Dafny, a sequential verification language, to implement and verify all the NFS operations on top of GoTxn. The sequential proofs helped achieve a number of good properties in DaisyNFS: easy incremental development (for example, adding support for large files), a relatively short proof (only 2x as many lines of proof as code), and a performant implementation (at least 60% the throughput of the Linux NFS server exporting ext4 across a variety of benchmarks). 
    more » « less
  7. The main contribution of this paper is GoJournal, a verified, concurrent journaling system that provides atomicity for storage applications, together with Perennial 2.0, a framework for formally specifying and verifying concurrent crash-safe systems. GoJournal’s goal is to bring the advantages of journaling for code to specs and proofs. Perennial 2.0 makes this possible by introducing several techniques to formalize GoJournal’s specification and to manage the complexity in the proof of GoJournal’s implementation. Lifting predicates and crash framing make the specification easy to use for developers, and logically atomic crash specifications allow for modular reasoning in GoJournal, making the proof tractable despite complex concurrency and crash interleavings. GoJournal is implemented in Go, and Perennial is implemented in the Coq proof assistant. While verifying GoJournal, we found one serious concurrency bug, even though GoJournal has many unit tests. We built a functional NFSv3 server, called GoNFS, to use GoJournal. Performance experiments show that GoNFS provides similar performance (e.g., at least 90% throughput across several benchmarks on an NVMe disk) to Linux’s NFS server exporting an ext4 file system, suggesting that GoJournal is a competitive journaling system. We also verified a simple NFS server using GoJournal’s specs, which confirms that they are helpful for application verification: a significant part of the proof doesn’t have to consider concurrency and crashes. 
    more » « less
  8. This paper introduces Perennial, a framework for verifying concurrent, crash-safe systems. Perennial extends the Iris concurrency framework with three techniques to enable crash-safety reasoning: recovery leases, recovery helping, and versioned memory. To ease development and deployment of applications, Perennial provides Goose, a subset of Go and a translator from that subset to a model in Perennial with support for reasoning about Go threads, data structures, and file-system primitives. We implemented and verified a crash-safe, concurrent mail server using Perennial and Goose that achieves speedup on multiple cores. Both Perennial and Iris use the Coq proof assistant, and the mail server and the framework's proofs are machine checked. 
    more » « less