Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 26, 2026
- 
            Abstract The cost‐effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low‐cost fabrication approach to directly create and pattern crumpled porous graphene/NiS2nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre‐strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS2nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform. By leveraging the electrical energy harvested from the kinetic motion from wearable triboelectric nanogenerator (TENG) and stored in micro‐supercapacitor arrays (MSCAs) to drive biophysical sensors, the system is demonstrated to monitor human motions, body temperature, and toxic gas in the exposed environment. The material selections, design strategies, and fabrication approaches from this study provide functional nanomaterial composites with tunable properties for future high‐performance bio‐integrated electronics.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Endrullis, Jörg; Schmitz, Sylvain (Ed.)We prove that the equational theory of Kleene algebra with commutativity conditions on primitives (or atomic terms) is undecidable, thereby settling a longstanding open question in the theory of Kleene algebra. While this question has also been recently solved independently by Kuznetsov, our results hold even for weaker theories that do not support the induction axioms of Kleene algebra.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            We provide a comprehensive comparison of linear amplifiers and microwave photon counters in axion dark matter experiments. The study is done assuming a range of realistic operating conditions and detector parameters, over the frequency range between 1 and 30 GHz. As expected, photon counters are found to be advantageous under low background, at high frequencies ( ), they can be implemented with robust wide-frequency tuning or a very low dark count rate. Additional noteworthy observations emerging from this study include: (1) an expanded applicability of off-resonance photon background reduction, including the single-quadrature state squeezing, for scan rate enhancements; (2) a much broader appeal for operating the haloscope resonators in the overcoupling regime, up to ; (3) the need for a detailed investigation into the cryogenic and electromagnetic conditions inside haloscope cavities to lower the photon temperature for future experiments; (4) the necessity to develop a distributed network of coupling ports in high-volume axion haloscopes to utilize these potential gains in the scan rate. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract Metallic materials under high stress often exhibit deformation localization, manifesting as slip banding. Over seven decades ago, Frank and Read introduced the well-known model of dislocation multiplication at a source, explaining slip band formation. Here, we reveal two distinct types of slip bands (confined and extended) in compressed CrCoNi alloys through multi-scale testing and modeling from microscopic to atomic scales. The confined slip band, characterized by a thin glide zone, arises from the conventional process of repetitive full dislocation emissions at Frank–Read source. Contrary to the classical model, the extended band stems from slip-induced deactivation of dislocation sources, followed by consequent generation of new sources on adjacent planes, leading to rapid band thickening. Our findings provide insights into atomic-scale collective dislocation motion and microscopic deformation instability in advanced structural materials.more » « lessFree, publicly-accessible full text available April 16, 2026
- 
            Guarded Kleene Algebra with Tests (GKAT) provides a sound and complete framework to reason about trace equivalence between simple imperative programs. However, there are still several notable limitations. First, GKAT is completely agnostic with respect to the meaning of primitives, to keep equivalence decidable. Second, GKAT excludes non-local control flow such as goto, break, and return. To overcome these limitations, we introduceControl-Flow GKAT(CF-GKAT), a system that allows reasoning about programs that include non-local control flow as well as hardcoded values. CF-GKAT is able to soundly and completely verify trace equivalence of a larger class of programs, while preserving the nearly-linear efficiency of GKAT. This makes CF-GKAT suitable for the verification of control-flow manipulating procedures, such as decompilation and goto-elimination. To demonstrate CF-GKAT’s abilities, we validated the output of several highly non-trivial program transformations, such as Erosa and Hendren’s goto-elimination procedure and the output of Ghidra decompiler. CF-GKAT opens up the application of Kleene Algebra to a wider set of challenges, and provides an important verification tool that can be applied to the field of decompilation and control-flow transformation.more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            Smart clothing has exhibited impressive body pose/movement tracking capabilities while preserving the soft, comfortable, and familiar nature of clothing. For practical everyday use, smart clothing should (1) be available in a range of sizes to accommodate different fit preferences, and (2) be washable to allow repeated use. In SeamFit, we demonstrate washable T-shirts, embedded with capacitive seam electrodes, available in three different sizes, for exercise logging. Our T-shirt design, customized signal processing & machine learning pipeline allow the SeamFit system to generalize across users, fits, and wash cycles. Prior wearable exercise logging solutions, which often attach a miniaturized sensor to a body location, struggle to track exercises that mainly involve other body parts. SeamFit T-shirt naturally covers a large area of the body and still tracks exercises that mainly involve uncovered joints (e.g., elbows and the lower body). In a user study with 15 participants performing 14 exercises, SeamFit detects exercises with an accuracy of 89%, classifies exercises with an accuracy of 93.4%, and counts exercises with an error of 0.9 counts, on average. SeamFit is a step towards practical smart clothing for everyday uses.more » « lessFree, publicly-accessible full text available March 3, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
