skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Haoxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a new approach for independently computing compact sketches that can be used to approximate the inner product between pairs of high-dimensional vectors. Based on the Weighted MinHash algorithm, our approach admits strong accuracy guarantees that improve on the guarantees of popular linear sketching approaches for inner product estimation, such as CountSketch and Johnson-Lindenstrauss projection. Specifically, while our method exactly matches linear sketching for dense vectors, it yields significantly lower error for sparse vectors with limited overlap between non-zero entries. Such vectors arise in many applications involving sparse data, as well as in increasingly popular dataset search applications, where inner products are used to estimate data covariance, conditional means, and other quantities involving columns in unjoined tables. We complement our theoretical results by showing that our approach empirically outperforms existing linear sketches and unweighted hashing-based sketches for sparse vectors. 
    more » « less
    Free, publicly-accessible full text available June 18, 2024