Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
We study robust testing and estimation of discrete distributions in the strong contamination model. Our results cover both centralized setting and distributed setting with general local information constraints including communication and LDP constraints. Our technique relates the strength of manipulation attacks to the earth-mover distance using Hamming distance as the metric between messages (samples) from the users. In the centralized setting, we provide optimal error bounds for both learning and testing. Our lower bounds under local information constraints build on the recent lower bound methods in distributed inference. In the communication constrained setting, we develop novel algorithms based on random hashing and an L1-L1 isometry.more » « less
-
We develop differentially private methods for estimating various distributional properties. Given a sample from a discrete distribution p, some functional f, and accuracy and privacy parameters alpha and epsilon, the goal is to estimate f(p) up to accuracy alpha, while maintaining epsilon-differential privacy of the sample. We prove almost-tight bounds on the sample size required for this problem for several functionals of interest, including support size, support coverage, and entropy. We show that the cost of privacy is negligible in a variety of settings, both theoretically and experimentally. Our methods are based on a sensitivity analysis of several state-of-the-art methods for estimating these properties with sublinear sample complexitiesmore » « less
-
We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problems under (epsilon, delta)-differential privacy. We provide sample optimal algorithms for identity testing problem for all parameter ranges, and the first results for closeness testing. Our closeness testing bounds are optimal in the sparse regime where the number of samples is at most k. Our upper bounds are obtained by privatizing non-private estimators for these problems. The non-private estimators are chosen to have small sensitivity. We propose a general framework to establish lower bounds on the sample complexity of statistical tasks under differential privacy. We show a bound on di erentially private algorithms in terms of a coupling between the two hypothesis classes we aim to test. By carefully constructing chosen priors over the hypothesis classes, and using Le Cam’s two point theorem we provide a general mechanism for proving lower bounds. We believe that the framework can be used to obtain strong lower bounds for other statistical tasks under privacy.more » « less
-
We develop differentially private methods for estimating various distributional properties. Given a sample from a discrete distribution p, some functional f, and accuracy and privacy parameters alpha and epsilon, the goal is to estimate f(p) up to accuracy alpha, while maintaining epsilon-differential privacy of the sample. We prove almost-tight bounds on the sample size required for this problem for several functionals of interest, including support size, support coverage, and entropy. We show that the cost of privacy is negligible in a variety of settings, both theoretically and experimentally. Our methods are based on a sensitivity analysis of several state-of-the-art methods for estimating these properties with sublinear sample complexities.more » « less
-
Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)Underground Nuclear Astrophysics Experiment in China (JUNA) has been commissioned by taking the advantage of the ultra-low background in Jinping underground lab. High current mA level 400 KV accelerator with an ECR source and BGO detectors were commissioned. JUNA studies directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. In the first quarter of 2021, JUNA performed the direct measurements of 25 Mg(p, γ ) 26 Al, 19 F(p, α ) 16 O, 13 C( α ,n) 16 O and 12 C( α , γ ) 16 O near the Gamow window. The experimental results reflect the potential of JUNA with higher statistics, precision and sensitivity of the data. The preliminary results of JUNA experiment and future plan are given.more » « less