skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Jingyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The metadata service (MDS) sits on the critical path for distributed file system (DFS) operations, and therefore it is key to the overall performance of a large-scale DFS. Common “serverful” MDS architectures, such as a single server or cluster of servers, have a significant shortcoming: either they are not scalable, or they make it difficult to achieve an optimal balance of performance, resource utilization, and cost. A modern MDS requires a novel architecture that addresses this shortcoming. To this end, we design and implement 𝜆FS, an elastic, high- performance metadata service for large-scale DFSes. 𝜆FS scales a DFS metadata cache elastically on a FaaS (Function-as-a-Service) platform and synthesizes a series of techniques to overcome the obstacles that are encountered when building large, stateful, and performance-sensitive applications on FaaS platforms. 𝜆FS takes full advantage of the unique benefits offered by FaaS—elastic scaling and massive parallelism—to realize a highly-optimized metadata service capable of sustaining up to 4.13× higher throughput, 90.40% lower latency, 85.99% lower cost, 3.33× better performance-per-cost, and better resource utilization and efficiency than a state-of-the-art DFS for an industrial workload 
    more » « less
    Free, publicly-accessible full text available April 27, 2025
  2. Summary

    Single‐cell proteomics (SCP) is an emerging approach to resolve cellular heterogeneity within complex tissues of multi‐cellular organisms.

    Here, we demonstrate the feasibility of SCP on plant samples using the model plantArabidopsis thaliana. Specifically, we focused on examining isolated single cells from the cortex and endodermis, which are two adjacent root cell types derived from a common stem cell lineage.

    From 756 root cells, we identified 3763 proteins and 1118 proteins/cell. Ultimately, we focus on 3217 proteins quantified following stringent filtering. Of these, we identified 596 proteins whose expression is enriched in either the cortex or endodermis and are able to differentiate these closely related plant cell types.

    Collectivity, this study demonstrates that SCP can resolve neighboring cell types with distinct functions, thereby facilitating the identification of biomarkers and candidate proteins to enable functional genomics.

     
    more » « less
  3. Cloud object storage such as AWS S3 is cost-effective and highly elastic but relatively slow, while high-performance cloud storage such as AWS ElastiCache is expensive and provides limited elasticity. We present a new cloud storage service called ServerlessMemory, which stores data using the memory of serverless functions. ServerlessMemory employs a sliding-window-based memory management strategy inspired by the garbage collection mechanisms used in the programming language to effectively segregate hot/cold data and provides fine-grained elasticity, good performance, and a pay-per-access cost model with extremely low cost. We then design and implement InfiniStore, a persistent and elastic cloud storage system, which seamlessly couples the function-based ServerlessMemory layer with a persistent, inexpensive cloud object store layer. InfiniStore enables durability despite function failures using a fast parallel recovery scheme built on the auto-scaling functionality of a FaaS (Function-as-a-Service) platform. We evaluate InfiniStore extensively using both microbenchmarking and two real-world applications. Results show that InfiniStore has more performance benefits for objects larger than 10 MB compared to AWS ElastiCache and Anna, and InfiniStore achieves 26.25% and 97.24% tenant-side cost reduction compared to InfiniCache and ElastiCache, respectively. 
    more » « less
  4. Brassinosteroids are plant steroid hormones that regulate diverse processes, such as cell division and cell elongation, through gene regulatory networks that vary in space and time. By using time series single-cell RNA sequencing to profile brassinosteroid-responsive gene expression specific to different cell types and developmental stages of theArabidopsisroot, we identified the elongating cortex as a site where brassinosteroids trigger a shift from proliferation to elongation associated with increased expression of cell wall–related genes. Our analysis revealedHOMEOBOX FROM ARABIDOPSIS THALIANA 7(HAT7) andGT-2-LIKE 1(GTL1) as brassinosteroid-responsive transcription factors that regulate cortex cell elongation. These results establish the cortex as a site of brassinosteroid-mediated growth and unveil a brassinosteroid signaling network regulating the transition from proliferation to elongation, which illuminates aspects of spatiotemporal hormone responses.

     
    more » « less
  5. Reconfigurable intelligent surfaces (RISs) have been proposed to increase coverage in millimeter-wave networks by providing an indirect path from transmitter to receiver when the line-of-sight (LoS) path is blocked. In this paper, the problem of optimizing the locations and orientations of multiple RISs is considered for the first time. An iterative coverage expansion algorithm based on gradient descent is proposed for indoor scenarios where obstacles are present. The goal of this algorithm is to maximize coverage within the shadowed regions where there is no LoS path to the access point. The algorithm is guaranteed to converge to a local coverage maximum and is combined with an intelligent initialization procedure to improve the performance and efficiency of the approach. Numerical results demonstrate that, in dense obstacle environments, the proposed algorithm doubles coverage compared to a solution without RISs and provides about a 10% coverage increase compared to a brute force sequential RIS placement approach. 
    more » « less
  6. null (Ed.)
    Executing complex, burst-parallel, directed acyclic graph (DAG) jobs poses a major challenge for serverless execution frameworks, which will need to rapidly scale and schedule tasks at high throughput, while minimizing data movement across tasks. We demonstrate that, for serverless parallel computations, decentralized scheduling enables scheduling to be distributed across Lambda executors that can schedule tasks in parallel, and brings multiple benefits, including enhanced data locality, reduced network I/Os, automatic resource elasticity, and improved cost effectiveness. We describe the implementation and deployment of our new serverless parallel framework, called Wukong, on AWS Lambda. We show that Wukong achieves near-ideal scalability, executes parallel computation jobs up to 68.17X faster, reduces network I/O by multiple orders of magnitude, and achieves 92.96% tenant-side cost savings compared to numpywren. 
    more » « less
  7. Abstract

    Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy.

     
    more » « less