Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2024
-
Cloud object storage such as AWS S3 is cost-effective and highly elastic but relatively slow, while high-performance cloud storage such as AWS ElastiCache is expensive and provides limited elasticity. We present a new cloud storage service called ServerlessMemory, which stores data using the memory of serverless functions. ServerlessMemory employs a sliding-window-based memory management strategy inspired by the garbage collection mechanisms used in the programming language to effectively segregate hot/cold data and provides fine-grained elasticity, good performance, and a pay-per-access cost model with extremely low cost. We then design and implement InfiniStore, a persistent and elastic cloud storage system, which seamlessly couples the function-based ServerlessMemory layer with a persistent, inexpensive cloud object store layer. InfiniStore enables durability despite function failures using a fast parallel recovery scheme built on the auto-scaling functionality of a FaaS (Function-as-a-Service) platform. We evaluate InfiniStore extensively using both microbenchmarking and two real-world applications. Results show that InfiniStore has more performance benefits for objects larger than 10 MB compared to AWS ElastiCache and Anna, and InfiniStore achieves 26.25% and 97.24% tenant-side cost reduction compared to InfiniCache and ElastiCache, respectively.Free, publicly-accessible full text available March 1, 2024
-
Reconfigurable intelligent surfaces (RISs) have been proposed to increase coverage in millimeter-wave networks by providing an indirect path from transmitter to receiver when the line-of-sight (LoS) path is blocked. In this paper, the problem of optimizing the locations and orientations of multiple RISs is considered for the first time. An iterative coverage expansion algorithm based on gradient descent is proposed for indoor scenarios where obstacles are present. The goal of this algorithm is to maximize coverage within the shadowed regions where there is no LoS path to the access point. The algorithm is guaranteed to converge to a local coverage maximum and is combined with an intelligent initialization procedure to improve the performance and efficiency of the approach. Numerical results demonstrate that, in dense obstacle environments, the proposed algorithm doubles coverage compared to a solution without RISs and provides about a 10% coverage increase compared to a brute force sequential RIS placement approach.
-
Executing complex, burst-parallel, directed acyclic graph (DAG) jobs poses a major challenge for serverless execution frameworks, which will need to rapidly scale and schedule tasks at high throughput, while minimizing data movement across tasks. We demonstrate that, for serverless parallel computations, decentralized scheduling enables scheduling to be distributed across Lambda executors that can schedule tasks in parallel, and brings multiple benefits, including enhanced data locality, reduced network I/Os, automatic resource elasticity, and improved cost effectiveness. We describe the implementation and deployment of our new serverless parallel framework, called Wukong, on AWS Lambda. We show that Wukong achieves near-ideal scalability, executes parallel computation jobs up to 68.17X faster, reduces network I/O by multiple orders of magnitude, and achieves 92.96% tenant-side cost savings compared to numpywren.
-
Abstract Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy.
-
Internet-scale web applications are becoming increasingly storage-intensive and rely heavily on in-memory object caching to attain required I/O performance. We argue that the emerging serverless computing paradigm provides a well-suited, cost-effective platform for object caching. We present InfiniCache, a first-of-its-kind in-memory object caching system that is completely built and deployed atop ephemeral serverless functions. InfiniCache exploits and orchestrates serverless functions' memory resources to enable elastic pay-per-use caching. InfiniCache's design combines erasure coding, intelligent billed duration control, and an efficient data backup mechanism to maximize data availability and cost-effectiveness while balancing the risk of losing cached state and performance. We implement InfiniCache on AWS Lambda and show that it: (1) achieves 31 – 96× tenant-side cost savings compared to AWS ElastiCache for a large-object-only production workload, (2) can effectively provide 95.4% data availability for each one hour window, and (3) enables comparative performance seen in a typical in-memory cache.