skip to main content

Search for: All records

Creators/Authors contains: "Zhang, Ke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2023
  2. Free, publicly-accessible full text available May 1, 2023
  3. A new type of high-entropy alloy, a nitride-based (AlCrTiZrMo)N/ZrO2 nano-multilayered film, was designed to investigate the effect of ZrO2 layer thickness on the microstructure, mechanical properties, and thermal stability. The results show that when the thickness of the ZrO2 layer is less than 0.6 nm, it can be transformed into cubic-phase growth under the template effect of the (AlCrTiZrMo)N layer, resulting in an increased hardness. The (AlCrTiZrMo)N/ZrO2 film with a ZrO2 layer thickness of 0.6 nm has the highest hardness and elastic modulus of 35.1 GPa and 376.4 GPa, respectively. As the thickness of the ZrO2 layer further increases, ZrO2 cannot maintain the cubic structure, and the epitaxial growth interface is destroyed, resulting in a decrease in hardness. High-temperature annealing treatments indicate that the mechanical properties of the film decrease slightly after annealing at less than 900 °C for 30 min, while the mechanical properties decrease significantly after annealing for 30 min at 1000–1100 °C. The hardness and elastic modulus after annealing at 900 °C are still 24.5 GPa and 262.3 GPa, showing excellent thermal stability. This conclusion verifies the “template” effect of the nano-multilayered film, which improves the hardness and thermal stability of the high-entropy alloy.
  4. Abstract

    Gas mass is a fundamental quantity of protoplanetary disks that directly relates to their ability to form planets. Because we are unable to observe the bulk H2content of disks directly, we rely on indirect tracers to provide quantitative mass estimates. Current estimates for the gas masses of the observed disk population in the Lupus star-forming region are based on measurements of isotopologues of CO. However, without additional constraints, the degeneracy between H2mass and the elemental composition of the gas leads to large uncertainties in such estimates. Here, we explore the gas compositions of seven disks from the Lupus sample representing a range of CO-to-dust ratios. With Band 6 and 7 ALMA observations, we measure line emission for HCO+, HCN, and N2H+. We find a tentative correlation among the line fluxes for these three molecular species across the sample, but no correlation with13CO or submillimeter continuum fluxes. For the three disks where N2H+is detected, we find that a combination of high disk gas masses and subinterstellar C/H and O/H are needed to reproduce the observed values. We find increases of ∼10–100× previous mass estimates are required to match the observed line fluxes. This work highlights how multimolecular studies are essentialmore »for constraining the physical and chemical properties of the gas in populations of protoplanetary disks, and that CO isotopologues alone are not sufficient for determining the mass of many observed disks.

    « less
  5. Deep integration of nucleic acids with other classes of materials has become the basis of many useful technologies. Among these biohybrids, nucleic acid-containing copolymers have seen rapid development in both chemistry and applications. This review focuses on the various synthetic approaches for accessing nucleic acid–polymer biohybrids spanning post-polymerization conjugation, nucleic acids in polymerization, solid-phase synthesis, and nucleoside/nucleobase-functionalized polymers. We highlight the challenges associated with working with nucleic acids with each approach and the ingenuity of the solutions, with the hope of lowering the entry barrier and inspiring further investigations in this exciting area.
  6. Abstract We report the discovery of a circumplanetary disk (CPD) candidate embedded in the circumstellar disk of the T Tauri star AS 209 at a radial distance of about 200 au (on-sky separation of 1.″4 from the star at a position angle of 161°), isolated via 13 CO J = 2−1 emission. This is the first instance of CPD detection via gaseous emission capable of tracing the overall CPD mass. The CPD is spatially unresolved with a 117 × 82 mas beam and manifests as a point source in 13 CO, indicating that its diameter is ≲14 au. The CPD is embedded within an annular gap in the circumstellar disk previously identified using 12 CO and near-infrared scattered-light observations and is associated with localized velocity perturbations in 12 CO. The coincidence of these features suggests that they have a common origin: an embedded giant planet. We use the 13 CO intensity to constrain the CPD gas temperature and mass. We find that the CPD temperature is ≳35 K, higher than the circumstellar disk temperature at the radial location of the CPD, 22 K, suggesting that heating sources localized to the CPD must be present. The CPD gas mass is ≳0.095more »M Jup ≃ 30 M ⊕ adopting a standard 13 CO abundance. From the nondetection of millimeter continuum emission at the location of the CPD (3 σ flux density ≲26.4 μ Jy), we infer that the CPD dust mass is ≲0.027 M ⊕ ≃ 2.2 lunar masses, indicating a low dust-to-gas mass ratio of ≲9 × 10 −4 . We discuss the formation mechanism of the CPD-hosting giant planet on a wide orbit in the framework of gravitational instability and pebble accretion.« less
    Free, publicly-accessible full text available July 27, 2023