Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Manufacturing sustainable sodium ion batteries with high energy density and cyclability requires a uniquely tailored technology and a close attention to the economical and environmental factors. In this work, we summarized the most important design metrics in sodium ion batteries with the emphasis on cathode materials and outlined a transparent data reporting approach based on common metrics for performance evaluation of future technologies. Sodium-ion batteries are considered as one of the most promising alternatives to lithium-based battery technologies. Despite the growing research in this field, the implementation of this technology has been practically hindered due to a lack of high energy density cathode materials with a long cycle-life. In this perspective, we first provide an overview of the milestones in the development of Na-ion battery (NIB) systems over time. Next, we discuss critical metrics in extraction of key elements used in NIB cathode materials which may impact the supply chain in near future. Finally, in the quest of most promising cathode materials for the next generation of NIBs, we overlay an extensive perspective on the main findings in design and test of more than 295 reports in the past 10 years, exhibiting that layered oxides, Prussian blue analogs (PBAs) and polyanions are leading candidates for cathode materials. An in-depth comparison of energy density and capacity retention of all the currently available cathode materials is also provided. In this perspective, we also highlight the importance of large data analysis for sustainable material design based on available datasets. The insights provided in this perspective, along with a more transparent data reporting approach and an implementation of common metrics for performance evaluation of NIBs can help accelerate future cathode materials design in the NIB field.
Graphical abstract -
Abstract Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo 4 O 7 material. We reveal that the surface of YBaCo 4 O 7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo 4 O 7 composes of corner-sharing only CoO 4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER.more » « less
-
As lithium-ion batteries (LIBs) become vital energy source for daily life and industry applications, a large volume of spent LIBs will be produced after their lifespan. Recycling of LIBs has been considered as an effective closed-loop solution to mitigate both environmental and economic issues associated with spent LIBs. While reclaiming of transition metal elements from LIB cathodes has been well established, recycling of graphite anodes has been overlooked. Here, we show an effect upcycling method involving both healing and doping to directly regenerate spent graphite anodes. Specifically, using boric acid pretreatment and short annealing, our regeneration process not only heals the composition/structure defects of degraded graphite but also creates functional boron-doping on the surface of graphite particles, providing high electrochemical activity and excellent cycling stability. The efficient direct regeneration of spent graphite by using low cost, non-volatile and non-caustic boric acid with low annealing temperature provides a more promising direction for green and sustainable recycling of spent LIB anodes.
-
Operando Interaction and Transformation of Metastable Defects in Layered Oxides for Na‐Ion Batteries
Abstract Non‐equilibrium defects often dictate the macroscopic properties of materials. They largely define the reversibility and kinetics of processes in intercalation hosts in rechargeable batteries. Recently, imaging methods have demonstrated that transient dislocations briefly appear in intercalation hosts during ion diffusion. Despite new discoveries, the understanding of impact, formation and self‐healing mechanisms of transient defects, including and beyond dislocations, is lacking. Here, operando X‐ray Bragg Coherent Diffractive Imaging (BCDI) and diffraction peak analysis capture the stages of formation of a unique metastable domain boundary, defect self‐healing, and resolve the local impact of defects on ionic diffusion in Na
x Ni1−y Mny O2intercalation hosts in a charging sodium‐ion battery. Results, applicable to a wide range of layered intercalation materials due to the shared nature of framework layers, elucidate new dynamics of transient defects and their connection to macroscopic properties, and suggest how to control the nanostructure dynamics. -
Abstract Lithium‐rich layered oxides (LRLO) have attracted great interest for high‐energy Li‐ion batteries due to their high theoretical capacity. However, capacity decay and voltage fade during the cycling impede the practical application of LRLO. Herein, the use of lithium bis‐(oxalate)borate (LiBOB) as an electrolyte additive is reported to improve the cycling stability in high voltage LRLO/graphite full cells. The cell with LiBOB‐containing electrolyte delivers 248 mAh g−1initial capacity and shows no capacity decay after 70 cycles as well as 95.5% retention after 150 cycles over 4.5 V cycling. A systematic mechanism study for the LiBOB‐enabled cycling performance improvement is conducted. Analytical electron microscopy under cryo‐condition confirms the formation of a uniform interphase and less phase transformation on the LRLO particle, accompanied by less voltage decay in the cathode. The formation of B‐F species is identified in the cycled electrolyte, elucidating the HF scavenger effect of LiBOB. Due to less HF corrosion on both electrode interphases, a reduced amount of transition metal dissolution and redeposition on the graphite is proved, thereby mitigating the capacity decay in LRLO/graphite full cells. These findings suggest that the borate additive is a promising strategy to optimize high voltage electrolyte for the industrialization of LRLO.