We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract r ≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hii region G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesM ⋆from 120 to 200M ⊙, with much smaller ionized-gas massesM ion-gas= 0.2–0.25M ⊙. The stellar mass is distributed within the gravitational radiusR g ≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi = 49°–56°. Radial motions at radiir >R g converge tov r ,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withM star= 32–60M ⊙, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. The inferred cluster density is very large, comparable to that reported at similar scales in the Galactic center. Stellar interactions are likely to occur within the next million years. -
Abstract We observed the high-mass protostellar core G335.579–0.272 ALMA1 at ∼200 au (0.″05) resolution with the Atacama Large Millimeter/submillimeter Array (ALMA) at 226 GHz (with a mass sensitivity of 5 σ = 0.2 M ⊙ at 10 K). We discovered that at least a binary system is forming inside this region, with an additional nearby bow-like structure (≲1000 au) that could add an additional member to the stellar system. These three sources are located at the center of the gravitational potential well of the ALMA1 region and the larger MM1 cluster. The emission from CH 3 OH (and many other tracers) is extended (>1000 au), revealing a common envelope toward the binary system. We use CH 2 CHCN line emission to estimate an inclination angle of the rotation axis of 26° with respect to the line of sight based on geometric assumptions and derive a kinematic mass of the primary source (protostar+disk) of 3.0 M ⊙ within a radius of 230 au. Using SiO emission, we find that the primary source drives the large-scale outflow revealed by previous observations. Precession of the binary system likely produces a change in orientation between the outflow at small scales observed here and large scales observed in previous works. The bow structure may have originated from the entrainment of matter into the envelope due to the widening or precession of the outflow, or, alternatively, an accretion streamer dominated by the gravity of the central sources. An additional third source, forming due to instabilities in the streamer, cannot be ruled out as a temperature gradient is needed to produce the observed absorption spectra.more » « less
-
ABSTRACT We present an overview and data release of the spectral line component of the SMA Large Program, CMZoom. CMZoom observed 12CO (2–1), 13CO (2–1), and C18O (2–1), three transitions of H2CO, several transitions of CH3OH, two transitions of OCS, and single transitions of SiO and SO within gas above a column density of N(H2) ≥ 1023 cm−2 in the Central Molecular Zone (CMZ; inner few hundred pc of the Galaxy). We extract spectra from all compact 1.3 mm CMZoom continuum sources and fit line profiles to the spectra. We use the fit results from the H2CO 3(0, 3)–2(0, 2) transition to determine the source kinematic properties. We find ∼90 per cent of the total mass of CMZoom sources have reliable kinematics. Only four compact continuum sources are formally self-gravitating. The remainder are consistent with being in hydrostatic equilibrium assuming that they are confined by the high external pressure in the CMZ. We find only two convincing proto-stellar outflows, ruling out a previously undetected population of very massive, actively accreting YSOs with strong outflows. Finally, despite having sufficient sensitivity and resolution to detect high-velocity compact clouds (HVCCs), which have been claimed as evidence for intermediate mass black holes interacting with molecular gas clouds, we find no such objects across the large survey area.
-
Abstract We present Very Large Array C- , X- , and Q -band continuum observations, as well as 1.3 mm continuum and CO(2-1) observations with the Submillimeter Array toward the high-mass protostellar candidate ISOSS J23053+5953 SMM2. Compact centimeter continuum emission was detected near the center of the SMM2 core with a spectral index of 0.24(± 0.15) between 6 and 3.6 cm, and a radio luminosity of 1.3(±0.4) mJy kpc 2 . The 1.3 mm thermal dust emission indicates a mass of the SMM2 core of 45.8 (±13.4) M ⊙ , and a density of 7.1 (±1.2)× 10 6 cm −3 . The CO(2-1) observations reveal a large, massive molecular outflow centered on the SMM2 core. This fast outflow (>50 km s −1 from the cloud systemic velocity) is highly collimated, with a broader, lower-velocity component. The large values for outflow mass (45.2 ± 12.6 M ⊙ ) and momentum rate (6 ± 2 × 10 −3 M ⊙ km s −1 yr −1 ) derived from the CO emission are consistent with those of flows driven by high-mass YSOs. The dynamical timescale of the flow is between 1.5 and 7.2 × 10 4 yr. We also found from the C 18 O to thermal dust emission ratio that CO is depleted by a factor of about 20, possibly due to freeze-out of CO molecules on dust grains. Our data are consistent with previous findings that ISOSS J23053 + 5953 SMM2 is an emerging high-mass protostar in an early phase of evolution, with an ionized jet and a fast, highly collimated, and massive outflow.more » « less
-
ABSTRACT Young massive clusters (YMCs) are compact (≲1 pc), high-mass (>104 M⊙) stellar systems of significant scientific interest. Due to their rarity and rapid formation, we have very few examples of YMC progenitor gas clouds before star formation has begun. As a result, the initial conditions required for YMC formation are uncertain. We present high resolution (0.13 arcsec, ∼1000 au) ALMA observations and Mopra single-dish data, showing that Galactic Centre dust ridge ‘Cloud d’ (G0.412 + 0.052, mass = 7.6 × 104 M⊙, radius = 3.2 pc) has the potential to become an Arches-like YMC (104 M⊙, r ∼ 1 pc), but is not yet forming stars. This would mean it is the youngest known pre-star-forming massive cluster and therefore could be an ideal laboratory for studying the initial conditions of YMC formation. We find 96 sources in the dust continuum, with masses ≲3 M⊙ and radii of ∼103 au. The source masses and separations are more consistent with thermal rather than turbulent fragmentation. It is not possible to unambiguously determine the dynamical state of most of the sources, as the uncertainty on virial parameter estimates is large. We find evidence for large-scale (∼1 pc) converging gas flows, which could cause the cloud to grow rapidly, gaining 104 M⊙ within 105 yr. The highest density gas is found at the convergent point of the large-scale flows. We expect this cloud to form many high-mass stars, but find no high-mass starless cores. If the sources represent the initial conditions for star formation, the resulting initial mass function will be bottom heavy.
-
ABSTRACT We investigate the presence of hub-filament systems in a large sample of 146 active proto-clusters, using H13CO+ J = 1-0 molecular line data obtained from the ATOMS survey. We find that filaments are ubiquitous in proto-clusters, and hub-filament systems are very common from dense core scales (∼0.1 pc) to clump/cloud scales (∼1–10 pc). The proportion of proto-clusters containing hub-filament systems decreases with increasing dust temperature (Td) and luminosity-to-mass ratios (L/M) of clumps, indicating that stellar feedback from H ii regions gradually destroys the hub-filament systems as proto-clusters evolve. Clear velocity gradients are seen along the longest filaments with a mean velocity gradient of 8.71 km s−1 pc−1 and a median velocity gradient of 5.54 km s−1 pc−1. We find that velocity gradients are small for filament lengths larger than ∼1 pc, probably hinting at the existence of inertial inflows, although we cannot determine whether the latter are driven by large-scale turbulence or large-scale gravitational contraction. In contrast, velocity gradients below ∼1 pc dramatically increase as filament lengths decrease, indicating that the gravity of the hubs or cores starts to dominate gas infall at small scales. We suggest that self-similar hub-filament systems and filamentary accretion at all scales may play a key role in high-mass star formation.