Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract El Niño–Southern Oscillation (ENSO), the dominant mode of interannual variability in the tropical Pacific, is well known to affect the extratropical climate via atmospheric teleconnections. Extratropical atmospheric variability may in turn influence the occurrence of ENSO events. The winter North Pacific Oscillation (NPO), as the secondary dominant mode of atmospheric variability over the North Pacific, has been recognized as a potential precursor for ENSO development. This study demonstrates that the preexisting winter NPO signal is primarily excited by sea surface temperature (SST) anomalies in the equatorial western–central Pacific. During ENSO years with a preceding winter NPO signal, which accounts for approximately 60% of ENSO events observed in 1979–2021, significant SST anomalies emerge in the equatorial western–central Pacific in the preceding autumn and winter. The concurrent presence of local convection anomalies can act as a catalyst for NPO-like atmospheric circulation anomalies. In contrast, during other ENSO years, significant SST anomalies are not observed in the equatorial western–central Pacific during the preceding winter, and correspondingly, the NPO signal is absent. Ensemble simulations using an atmospheric general circulation model driven by observed SST anomalies in the tropical western–central Pacific can well reproduce the interannual variability of observed NPO. Therefore, an alternative explanation for the observed NPO–ENSO relationship is that the preceding winter NPO is a companion to ENSO development, driven by the precursory SST signal in the equatorial western–central Pacific. Our results suggest that the lagged relationship between ENSO and the NPO involves a tropical–extratropical two-way coupling rather than a purely stochastic forcing of the extratropical atmosphere on ENSO.more » « lessFree, publicly-accessible full text available June 1, 2025
-
While the prominent influence of El Niño‐Southern Oscillation (ENSO) on the Indian Ocean Oscillation (IOD) is widely recognized, intricate relationships between them are often invoked that introduce challenges into seasonal predictions. Previous studies have shown that different flavors of El Niño exhibit distinct associations with the IOD. In this study, we demonstrate that La Niña's teleconnection to the IOD is primarily controlled by its longitudinal position. Westward‐displaced La Niña events tend to produce stronger negative convection anomalies in the central Pacific and more pronounced Walk Circulation anomalies, thereby triggering strong negative IOD events. In contrast, eastward‐displaced La Niña events are usually accompanied by feeble convection response due to the excessively cold conditions in the cold tongue, yielding insignificant IOD response. The pivotal role of La Niña's longitudinal position on the IOD's response is realistically reproduced by targeted pacemaker experiments, providing new insights into inter‐basin climate connections.more » « less
-
Abstract The Pacific Meridional Mode (PMM) has long been associated with extra‐tropical air‐sea coupling processes, which are thought to influence the development of El Niño‐Southern Oscillation (ENSO). Here we show that the PMM on seasonal to interannual timescales is closely associated with a newly proposed tropical mode known as the ENSO Combination mode (C‐mode), which arises from the nonlinear interaction between ENSO and the background annual cycle in the deep tropics. The PMM exhibits a remarkable resemblance with the C‐mode in atmospheric patterns, spectral characteristics, and local impacts. Based on a simple Hasselmann‐type model, we further demonstrate that the C‐mode‐related atmospheric anomalies can effectively drive PMM‐like sea surface temperature anomalies. As the C‐mode captures seasonally modulated ENSO characteristics, the seasonal‐to‐interannual PMM variability could naturally establish a connection with ENSO, thereby offering an alternative explanation for the observed relationship between PMM and ENSO.more » « less
-
Abstract El Niño–Southern Oscillation (ENSO) exhibits highly asymmetric temporal evolutions between its warm and cold phases. While El Niño events usually terminate rapidly after their mature phase and show an already established transition into the cold phase by the following summer, many La Niña events tend to persist throughout the second year and even reintensify in the ensuing winter. While many mechanisms were proposed, no consensus has been reached yet and the essential physical processes responsible for the multiyear behavior of La Niña remain to be illustrated. Here, we show that a unique ocean physical process operates during multiyear La Niña events. It is characterized by rapid double reversals of zonal ocean current anomalies in the equatorial Pacific and exhibits a fairly regular near-annual periodicity. Mixed-layer heat budget analyses reveal comparable contributions of the thermocline and zonal advective feedbacks to the SST anomaly growth in the first year of multiyear La Niña events; however, the zonal advective feedback plays a dominant role in the reintensification of La Niña events. Furthermore, the unique ocean process is identified to be closely associated with the preconditioning heat content state in the central to eastern equatorial Pacific before the first year of La Niña, which has been shown in previous studies to play an active role in setting the stage for the future reintensification of La Niña. Despite systematic underestimation, the above oceanic process can be broadly reproduced by state-of-the-art climate models, providing a potential additional source of predictability for the multiyear La Niña events.more » « less
-
The Pacific–North American (PNA) teleconnection pattern is one of the prominent atmospheric circulation modes in the extratropical Northern Hemisphere, and its seasonal to interannual predictability is suggested to originate from El Niño–Southern Oscillation (ENSO). Intriguingly, the PNA teleconnection pattern exhibits variance at near-annual frequencies, which is related to a rapid phase reversal of the PNA pattern during ENSO years, whereas the ENSO sea surface temperature (SST) anomalies in the tropical Pacific are evolving much slower in time. This distinct seasonal feature of the PNA pattern can be explained by an amplitude modulation of the interannual ENSO signal by the annual cycle (i.e., the ENSO combination mode). The ENSO-related seasonal phase transition of the PNA pattern is reproduced well in an atmospheric general circulation model when both the background SST annual cycle and ENSO SST anomalies are prescribed. In contrast, this characteristic seasonal evolution of the PNA pattern is absent when the tropical Pacific background SST annual cycle is not considered in the modeling experiments. The background SST annual cycle in the tropical Pacific modulates the ENSO-associated tropical Pacific convection response, leading to a rapid enhancement of convection anomalies in winter. The enhanced convection results in a fast establishment of the large-scale PNA teleconnection during ENSO years. The dynamics of this ENSO–annual cycle interaction fills an important gap in our understanding of the seasonally modulated PNA teleconnection pattern during ENSO years.more » « less
-
El Niño-Southern Oscillation (ENSO) sea surface temperature (SST) anomaly skewness encapsulates the nonlinear processes of strong ENSO events and affects future climate projections. Yet, its response to CO2 forcing remains not well understood. Here, we find ENSO skewness hysteresis in a large ensemble CO2 removal simulation. The positive SST skewness in the central-to-eastern tropical Pacific gradually weakens (most pronounced near the dateline) in response to increasing CO2, but weakens even further once CO2 is ramped down. Further analyses reveal that hysteresis of the Intertropical Convergence Zone migration leads to more active and farther eastward-located strong eastern Pacific El Niño events, thus decreasing central Pacific ENSO skewness by reducing the amplitude of the central Pacific positive SST anomalies and increasing the scaling effect of the eastern Pacific skewness denominator, i.e., ENSO intensity, respectively. The reduction of eastern Pacific El Niño maximum intensity, which is constrained by the SST zonal gradient of the projected background El Niño-like warming pattern, also contributes to a reduction of eastern Pacific SST skewness around the CO2 peak phase. This study highlights the divergent responses of different strong El Niño regimes in response to climate change.more » « less