Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 12, 2025
-
Double-electrode gas metal arc welding (DE-GMAW) modifies GMAW by adding a second electrode to bypass a portion of the current flowing from the wire. This reduces the current to, and the heat input on, the workpiece. Successful bypassing depends on the relative position of the bypass electrode to the continuously varying wire tip. To ensure proper operation, we propose robotizing the system using a follower robot to carry and adaptively adjust the bypass electrode. The primary information for monitoring this process is the arc image, which directly shows desired and undesired modes. However, developing a robust algorithm for processing the complex arc image is time-consuming and challenging. Employing a deep learning approach requires labeling numerous arc images for the corresponding DE-GMAW modes, which is not practically feasible. To introduce alternative labels, we analyze arc phenomena in various DE-GMAW modes and correlate them with distinct arc systems having varying voltages. These voltages serve as automatically derived labels to train the deep-learning network. The results demonstrated reliable process monitoring.more » « less
-
Gas metal arc welding (GMAW) is the most robotized arc welding process and most widely used process for wire arc additive manufacturing (WAAM). Double-electrode GMAW (DE-GMAW) is its novel modification achieved by adding a second/bypass electrode. It provides the capability to freely adjust the base metal current (heat input) without changing the wire current (mass input). However, it must be robotized in order to be adaptive to manufacturing variations and constraints. Due to the complexity of the process, we propose learning from human welders through their attempts to adjust the bypass electrode in collaboration with the robotized GMAW. To generalize human success using a follower robot/ surrogate, the distance between the wire and bypass electrode is proposed as the process state to quantify human observation and operation. As such, Inertial Measurement Unit (IMU) sensors are integrated to track the wire and bypass electrode operated by both the lead robot and the human welder. To interpret human adjustments per arc observation, a Convolutional Neural Network (CNN) is employed to process arc images and calculate the distance. The automatically obtained distance labels from IMU signals are used to train the CNN; however, they are noisy and inaccurate. Thus, the CNN is finely tuned through transfer learning using manually labeled distances. With accurately automatically calculated distances from the finely tuned CNN for all the data, the demonstrations from human welders are analyzed. The generalized knowledge is implemented by a robotic surrogate, substituting for the human welder to fully automate the DE-GMAW. Experiments demonstrated the superior performance of the fully robotized, and adaptively controlled, DE-GMAW process.more » « less