skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zeyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A central focus of data science is the transformation of empirical evidence into knowledge. As such, the key insights and scientific attitudes of deep thinkers like Fisher, Popper, and Tukey are expected to inspire exciting new advances in machine learning and artificial intelligence in years to come. Along these lines, the present paper advances a novel {\em typicality principle} which states, roughly, that if the observed data is sufficiently ``atypical'' in a certain sense relative to a posited theory, then that theory is unwarranted. This emphasis on typicality brings familiar but often overlooked background notions like model-checking to the inferential foreground. One instantiation of the typicality principle is in the context of parameter estimation, where we propose a new typicality-based regularization strategy that leans heavily on goodness-of-fit testing. The effectiveness of this new regularization strategy is illustrated in three non-trivial examples where ordinary maximum likelihood estimation fails miserably. We also demonstrate how the typicality principle fits within a bigger picture of reliable and efficient uncertainty quantification. 
    more » « less
    Free, publicly-accessible full text available January 24, 2026
  2. In the past decade, remarkable advances in integrated photonic technologies have enabled table-top experiments and instrumentation to be scaled down to compact chips with significant reduction in size, weight, power consumption, and cost. Here, we demonstrate an integrated continuously tunable laser in a heterogeneous gallium arsenide-on-silicon nitride (GaAs-on-SiN) platform that emits in the far-red radiation spectrum near 780 nm, with 20 nm tuning range, <6 kHz intrinsic linewidth, and a >40 dB side-mode suppression ratio. The GaAs optical gain regions are heterogeneously integrated with low-loss SiN waveguides. The narrow linewidth lasing is achieved with an extended cavity consisting of a resonator-based Vernier mirror and a phase shifter. Utilizing synchronous tuning of the integrated heaters, we show mode-hop-free wavelength tuning over a range larger than 100 GHz (200 pm). To demonstrate the potential of the device, we investigate two illustrative applications: (i) the linear characterization of a silicon nitride microresonator designed for entangled-photon pair generation and (ii) the absorption spectroscopy and locking to the D1 and D2 transition lines of 87Rb. The performance of the proposed integrated laser holds promise for a broader spectrum of both classical and quantum applications in the visible range, encompassing communication, control, sensing, and computing. 
    more » « less
  3. 2D layered metal-organic frameworks (MOFs) are a new class of multifunctional materials that can provide electrical conductivity on top of the conventional structural characteristics of MOFs, offering potential applications in electronics and optics. Here, for the first time, we employ Machine Learning (ML) techniques to predict the thermodynamic stability and electronic properties of layered electrically conductive (EC) MOFs, bypassing expensive ab initio calculations for the design and discovery of new materials. Proper feature engineering is a very important factor in utilizing ML models for such purposes. Here, we show that a combination of elemental features, using generic statistical reduction methods and crystal structure information curated from the recently introduced EC-MOF database, leads to a reasonable prediction of the thermodynamic and electronic properties of EC MOFs. We utilize these features in training a diverse range of ML classifiers and regressors. Evaluating the performance of these different models, we show that an ensemble learning approach in the form of stacking ML models can lead to higher accuracy and more reliability on the predictive power of ML to be employed in future MOF research. 
    more » « less
  4. Free, publicly-accessible full text available June 17, 2025
  5. Free, publicly-accessible full text available June 1, 2025
  6. Most of the chemistry in nanoporous materials with small pore sizes and windows takes place on the outer surface, which is in direct contact with the substrate/solvent, rather than within the pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics (MD) simulations to decipher the interaction of water with a realistic finite ∼5.1 nm nanoparticle (NP) model of ZIF-8, with edges containing undercoordinated Zn metal sites, vs a conventionally employed pristine crystalline bulk (CB) model. The hydrophobic interior surface of the CB model imparts significant dynamical behavior on water molecules with (i) increasing diffusivity from the surface toward the center of the pores and (ii) confined water, at low concentration, showing similar diffusivity to that of the bulk water. On the other hand, water molecules adsorbed on the surface of the NP model exhibit a range of characteristics, including “coordinated”, “confined”, and “bulk-like” behavior. Some of the water molecules form coordinative bonds with the undercoordinated Zn metal centers and act as nucleation sites for the water droplets to form, facilitating diffusion into the pores. However, diffusion of water molecules is limited to the areas near the surface and not all the way to the core of the NP model. Our atomistic MD simulations provide insights into the stability of ZIFs in aqueous solutions despite hydrolysis of their outer surface. Such insights are helpful in designing more robust nanoporous materials for applications in humid environments. 
    more » « less
  7. Abstract We study the asymptotic behavior of the normalized maxima of real-valued diffusive particles with mean-field drift interaction. Our main result establishes propagation of chaos: in the large population limit, the normalized maxima behave as those arising in an i.i.d. system where each particle follows the associated McKean–Vlasov limiting dynamics. Because the maximum depends on all particles, our result does not follow from classical propagation of chaos, where convergence to an i.i.d. limit holds for any fixed number of particles but not all particles simultaneously. The proof uses a change of measure argument that depends on a delicate combinatorial analysis of the iterated stochastic integrals appearing in the chaos expansion of the Radon–Nikodym density. 
    more » « less
  8. In this paper, we explore the potential of utilizing time-stamps as labels for Deep Learning from webcams, surveillance cameras, and other fixed viewpoint image situations. Specifically, we explore if learning to classify images by the time they were taken uncovers interesting patterns and behaviors in the scenes captured by these cameras. We describe approaches to building datasets with large quantities of images and their accompanying labels, making them suitable for large-scale deep learning approaches. We share our results from the initial deep learning experiments. 
    more » « less
  9. We explore the use of deep convolutional neural networks (CNNs) trained on overhead imagery of biomass sorghum to ascertain the relationship between single nucleotide polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control. We consider both CNNs trained explicitly on the classification task of predicting whether an image shows a plant with a reference or alternate version of various SNPs as well as CNNs trained to create data-driven features based on learning features so that images from the same plot are more similar than images from different plots, and then using the features this network learns for genetic marker classification. We characterize how efficient both approaches are at predicting the presence or absence of a genetic markers, and visualize what parts of the images are most important for those predictions. We find that the data-driven approaches give somewhat higher prediction performance, but have visualizations that are harder to interpret; and we give suggestions of potential future machine learning research and discuss the possibilities of using this approach to uncover unknown genotype × phenotype relationships. 
    more » « less