Graphene, with its two linearly dispersing Dirac points with opposite windings, is the minimal topological nodal configuration in the hexagonal Brillouin zone. Topological semimetals with higher-order nodes beyond the Dirac points have recently attracted considerable interest due to their rich chiral physics and their potential for the design of next-generation integrated devices. Here we report the experimental realization of the topological semimetal with quadratic nodes in a photonic microring lattice. Our structure hosts a robust second-order node at the center of the Brillouin zone and two Dirac points at the Brillouin zone boundary—the second minimal configuration, next to graphene, that satisfies the Nielsen–Ninomiya theorem. The symmetry-protected quadratic nodal point, together with the Dirac points, leads to the coexistence of massive and massless components in a hybrid chiral particle. This gives rise to unique transport properties, which we demonstrate by directly imaging simultaneous Klein and anti-Klein tunnelling in the microring lattice.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
We demonstrate imaging of individual modes in a femtosecond laser written multimode waveguide by spatial-heterodyne interferometry and decomposition in data post-processing. Despite the spatial and temporal overlap between multiple waveguide modes, we show the extraction of amplitude for each individual mode and their corresponding temporal dynamics. The mode imaging scheme is effective with the presence of intermodal interference and can be prospective for sensing of ultrafast phase and refractive index fluctuations. We also reconstruct the two-dimensional transverse refractive index map of the multimode waveguide leveraging all the imaged modes and substantiate the reconstructed index map by simulation.
-
Abstract On-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information–processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse. A continuous FOAM sweep between charge 0 and charge +2 is demonstrated in a 100 ps time window, with the ultimate speed limit being established by the carrier recombination time in the gain medium. Our results provide a new route to generating vortex microlasers carrying FOAM that are switchable at GHz frequencies by an ultrafast control pulse.
-
Applications that use the orbital angular momentum (OAM) of light show promise for increasing the bandwidth of optical communication networks. However, direct photocurrent detection of different OAM modes has not yet been demonstrated. Most studies of current responses to electromagnetic fields have focused on optical intensity–related effects, but phase information has been lost. In this study, we designed a photodetector based on tungsten ditelluride (WTe 2 ) with carefully fabricated electrode geometries to facilitate direct characterization of the topological charge of OAM of light. This orbital photogalvanic effect, driven by the helical phase gradient, is distinguished by a current winding around the optical beam axis with a magnitude proportional to its quantized OAM mode number. Our study provides a route to develop on-chip detection of optical OAM modes, which can enable the development of next-generation photonic circuits.more » « less
-
Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil “aspiration-assisted bioprinting (AAB),” which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.more » « less
-
The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non–Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology.more » « less