Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graph Foundation Models (GFMs) are emerging as a significant research topic in the graph domain, aiming to develop graph models trained on extensive and diverse data to enhance their applicability across various tasks and domains. Developing GFMs presents unique challenges over traditional Graph Neural Networks (GNNs), which are typically trained from scratch for specific tasks on particular datasets. The primary challenge in constructing GFMs lies in effectively leveraging vast and diverse graph data to achieve positive transfer. Drawing inspiration from existing foundation models in the CV and NLP domains, we propose a novel perspective for the GFM development by advocating for a ``graph vocabulary'', in which the basic transferable units underlying graphs encode the invariance on graphs. We ground the graph vocabulary construction from essential aspects including network analysis, expressiveness, and stability. Such a vocabulary perspective can potentially advance the future GFM design in line with the neural scaling laws. All relevant resources with GFM design can be found here.more » « lessFree, publicly-accessible full text available July 24, 2025
-
Abstract It is challenging to locate small-airway obstructions induced by chronic obstructive pulmonary disease (COPD) directly from visualization using available medical imaging techniques. Accordingly, this study proposes an innovative and noninvasive diagnostic method to detect obstruction locations using computational fluid dynamics (CFD) and convolutional neural network (CNN). Specifically, expiratory airflow velocity contours were obtained from CFD simulations in a subject-specific 3D tracheobronchial tree. One case representing normal airways and 990 cases associated with different obstruction sites were investigated using CFD. The expiratory airflow velocity contours at a selected cross section in the trachea were labeled and stored as the database for training and testing two CNN models, i.e., ResNet50 and YOLOv4. Gradient-weighted class activation mapping (Grad-CAM) and the Pearson correlation coefficient were employed and calculated to classify small-airway obstruction locations and pulmonary airflow pattern shifts and highlight the highly correlated regions in the contours for locating the obstruction sites. Results indicate that the airflow velocity pattern shifts are difficult to directly visualize based on the comparisons of CFD velocity contours. CNN results show strong relevance exists between the locations of the obstruction and the expiratory airflow velocity contours. The two CNN-based models are both capable of classifying the left lung, right lung, and both lungs obstructions well using the CFD simulated airflow contour images with total accuracy higher than 95.07%. The two automatic classification algorithms are highly transformative to clinical practice for early diagnosis of obstruction locations in the lung using the expiratory airflow velocity distributions, which could be imaged using hyperpolarized magnetic resonance imaging.more » « less
-
Prescription (aka Rx) drugs can be easily overprescribed and lead to drug abuse or opioid overdose. Accordingly, a state-run prescription drug monitoring program (PDMP) in the United States has been developed to reduce overprescribing. However, PDMP has limited capability in detecting patients' potential overprescribing behaviors, impairing its effectiveness in preventing drug abuse and overdose in patients. In this paper, we propose a novel model RxNet, which builds 1) a dynamic heterogeneous graph to model Rx refills that are essentially prescribing and dispensing (P&D) relationships among various patients, 2) an RxLSTM network to explore the dynamic Rx-refill behavior and medical condition variation of patients, and 3) a dosing-adaptive network to extract and recalibrate dosing patterns and obtain the refined patient representations which are finally utilized for overprescribing detection. The extensive experimental results on a one-year state-wide PDMP data demonstrate that RxNet consistently outperforms state-of-the-art methods in predicting patients at high risk of opioid overdose and drug abuse.