skip to main content

Search for: All records

Creators/Authors contains: "Zhao, Jinglin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reconstructed terabyte and petabyte electron microscopy image volumes contain fully-segmented neurons at resolutions fine enough to identify every synaptic connection. After manual or automatic reconstruction, neuroscientists want to extract wiring diagrams and connectivity information to analyze the data at a higher level. Despite significant advances in image acquisition, neuron segmentation, and synapse detection techniques, the extracted wiring diagrams are still quite coarse, and often do not take into account the wealth of information in the densely reconstructed volumes. We propose a synapse-aware skeleton generation strategy to transform the reconstructed volumes into an information-rich yet abstract format on which neuroscientists can perform biological analysis and run simulations. Our method extends existing topological thinning strategies and guarantees a one-to-one correspondence between skeleton endpoints and synapses while simultaneously generating vital geometric statistics on the neuronal processes. We demonstrate our results on three large-scale connectomic datasets and compare against current state-of-the-art skeletonization algorithms.
  2. Abstract

    Measured spectral shifts due to intrinsic stellar variability (e.g., pulsations, granulation) and activity (e.g., spots, plages) are the largest source of error for extreme-precision radial-velocity (EPRV) exoplanet detection. Several methods are designed to disentangle stellar signals from true center-of-mass shifts due to planets. The Extreme-precision Spectrograph (EXPRES) Stellar Signals Project (ESSP) presents a self-consistent comparison of 22 different methods tested on the same extreme-precision spectroscopic data from EXPRES. Methods derived new activity indicators, constructed models for mapping an indicator to the needed radial-velocity (RV) correction, or separated out shape- and shift-driven RV components. Since no ground truth is known when using real data, relative method performance is assessed using the total and nightly scatter of returned RVs and agreement between the results of different methods. Nearly all submitted methods return a lower RV rms than classic linear decorrelation, but no method is yet consistently reducing the RV rms to sub-meter-per-second levels. There is a concerning lack of agreement between the RVs returned by different methods. These results suggest that continued progress in this field necessitates increased interpretability of methods, high-cadence data to capture stellar signals at all timescales, and continued tests like the ESSP using consistent data sets withmore »more advanced metrics for method performance. Future comparisons should make use of various well-characterized data sets—such as solar data or data with known injected planetary and/or stellar signals—to better understand method performance and whether planetary signals are preserved.

    « less