skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Lianfeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2025
  2. Free, publicly-accessible full text available May 15, 2025
  3. Abstract

    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.

     
    more » « less
  4. In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (k||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok|| = 0 from higherk||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature.

     
    more » « less
  5. Abstract

    While metal‐halide perovskite light‐emitting diodes (PeLEDs) hold the potential for a new generation of display and lighting technology, their slow operation speed and response time limit their application scope. Here, high‐speed PeLEDs driven by nanosecond electrical pulses with a rise time of 1.2 ns are reported with a maximum radiance of approximately 480 kW sr−1 m−2at 8.3 kA cm−2, and an external quantum efficiency (EQE) of 1% at approximately 10 kA cm−2, through improved device configuration designs and material considerations. Enabled by the fast operation of PeLEDs, the temporal response provides access to transient charge carrier dynamics under electrical excitation, revealing several new electroluminescence quenching pathways. Finally, integrated distributed feedback (DFB) gratings are explored, which facilitate more directional light emission with a maximum radiance of approximately 1200 kW sr−1 m−2at 8.5 kA cm−2, a more than two‐fold enhancement to forward radiation output.

     
    more » « less
  6. Abstract

    Electrically pumped lasing from hybrid organic–inorganic metal‐halide perovskite semiconductors could lead to nonepitaxial diode lasers that are tunable throughout the visible and near‐infrared spectrum; however, a viable laser diode architecture has not been demonstrated to date. Here, an important step toward this goal is achieved by demonstrating two distinct distributed feedback light‐emitting diode architectures that achieve low threshold, optically pumped lasing. Bottom‐ and top‐emitting perovskite light‐emitting diodes are fabricated on glass and Si substrates, respectively, using a polydimethylsiloxane stamp in the latter case to nanoimprint a second‐order distributed feedback grating directly into the methylammonium lead iodide active layer. The devices exhibit room temperature thresholds as low as ≈6 µJ cm−2, a peak external quantum efficiency of ≈0.1%, and a maximum current density of ≈2 A cm−2that is presently limited by degradation associated with excessive leakage current. In this low current regime, electrical injection does not adversely affect the optical pump threshold, leading to a projected threshold current density of ≈2 kA cm−2. Operation at low temperature can significantly decrease this threshold, but must overcome extrinsic carrier freeze‐out in the doped organic transport layers to maintain a reasonable drive voltage.

     
    more » « less