Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Mapping 3D airflow fields is important for many HVAC, industrial, medical, and home applications. However, current approaches are expensive and time-consuming. We present Anemoi, a sub-$100 drone-based system for autonomously mapping 3D airflow fields in indoor environments. Anemoi leverages the effects of airflow on motor control signals to estimate the magnitude and direction of wind at any given point in space. We introduce an exploration algorithm for selecting optimal waypoints that minimize overall airflow estimation uncertainty. We demonstrate through microbenchmarks and real deployments that Anemoi is able to estimate wind speed and direction with errors up to 0.41 m/s and 25.1° lower than the existing state of the art and map 3D airflow fields with an average RMS error of 0.73 m/s.more » « less
-
Domain-specific sensor deployments are critical to enabling various IoT applications. Existing solutions for quickly deploying sensing systems require significant amount of work and time, even for experienced engineers. We propose LegoSENSE, a low-cost open-source and modular platform, built on top of the widely popular Raspberry Pi single-board computer, that makes it simple for anyone to rapidly set up and deploy a customized sensing solution for application specific IoT deployments. In addition, the ‘plug and play’ and ‘mix and match’ functionality of LegoSENSE makes the sensor modules reusable, and allows them to be mixed and matched to serve a variety of needs. We show, through a series of user studies, that LegoSENSE enables users without engineering background to deploy a wide range of applications up to 9 × faster than experienced engineers without the use of LegoSENSE. We open-source the hardware and software designs to foster an ever-evolving community, enabling IoT applications for enthusiasts, students, scientists, and researchers across various application domains with or without prior experiences with embedded platforms or coding.more » « less
-
Running with a consistent cadence (number of steps per minute) is important for runners to help reduce risk of injury, improve running form, and enhance overall bio-mechanical efficiency. We introduce CaNRun, a non-contact and acoustic-based system that uses sound captured from a mobile device placed on a treadmill to predict and report running cadence. CaNRun obviates the need for runners to utilize wearable devices or carry a mobile device on their body while running on a treadmill. CaNRun leverages a long short-term memory (LSTM) network to extract steps observed from the microphone to robustly estimate cadence. Through an 8-person study, we demonstrate that CaNRun achieves cadence detection accuracy without calibration for individual users, which is comparable to the accuracy of the Apple Watch despite being non-contact.more » « less
-
Cardiopulmonary ailments are a major cause of mortality. Stethoscopes are one of the most important tools that healthcare professionals use to screen patients for a variety of ailments, especially those related to the heart and lungs. Despite the growth of digital stethoscopes on the market, it takes years of training to properly use stethoscopes to listen for abnormal sounds within the body. In this demonstration, we present an intelligent stethoscope platform that makes stethoscopes more accessible to the general population. Our platform utilizes augmented reality (AR) to provide real-time guidance on where to properly place the stethoscope on the body, enabling the general population to screen themselves for ailments.more » « less
-
In this demonstration, in collaboration with licensed therapists, we introduce an AI therapist that takes advantage of the smart-home environment to screen day-to-day functioning and infer mental wellness of an occupant. Our system can assess a user's daily functioning and mental wellness based on a combination of direct conversation with users and information obtained from smart home devices using psychological rubrics proposed in [1]. We demonstrate that our system can converse with a user in a natural way (through a smartphone or smart speaker) and analyze a user's response semantically and sentimentally. In addition, we show that our system can provide preliminary interventions to help improve the user's wellness. In particular, when abnormal behavior is detected during the conversation or by smart home devices, the system provides psychotherapeutic consolations during the conversation and will check on the occupant's condition by actuating a home robot.more » « less
-
With the global spread of the COVID-19 pandemic, ventilation indoors is becoming increasingly important in preventing the spread of airborne viruses. However, while sensors exist to measure wind speed and airflow gradients, they must be manually held by a human or an autonomous vehicle, robot, or drone that moves around the space to build an airflow map of the environment. In this demonstration, we present DAE, a novel drone-based system that can automatically navigate and estimate air flow in a space without the need of additional sensors attached onto the drone. DAE directly utilizes the flight controller data that all drones use to self-stabilize in the air to estimate airflow. DAE estimates airflow gradients in a room based on how the flight controller adjusts the motors on the drone to compensate external perturbations and air currents, without the need for attaching additional wind or airflow sensors.more » « less
-
The growth of smart devices is making typical homes more intelligent. In this work, in collaboration with therapists, we introduce a home-based AI therapist that takes advantage of the smart home environment to screen the day-to-day functioning and infer mental wellness of an occupant. Unlike existing “chatbot” works that identify the mental status of users through conversation, our AI therapist additionally leverages smart devices and sensors throughout the home to infer mental well-being and assesses a user's daily functioning. We propose a series of 37 dimensions of daily functioning, that our system observes through conversing with the user and detecting daily activity events using sensors and smart sensors throughout the home. Our system utilizes these 37 dimensions in conjunction with novel natural language processing architectures to detect abnormalities in mental status (e.g., angry or depressed), well-being, and daily functioning and generate responses to console users when abnormalities are detected. Through a series of user studies, we demonstrate that our system can converse with a user naturally, accurately detect abnormalities in well-being, and provide appropriate responses consoling users.more » « less
-
There has been an immense growth in sensors, actuators, and smart devices in recent years, which enable us to better sense, actuate, and understand the physical world. Despite this growth, we have yet to achieve fully intelligent environments. This is, in part, due to the large number of different organizations creating smart devices with proprietary technologies and communication protocols that are not compatible with each other and require significant engineering to incorporate and adapt to specific applications. In this work, we present an easy-to-install and low-cost embedded platform that allows users to rapidly configure a mixture of sensors and actuators. The system is based on the commonly-used Raspberry Pi ecosystem, easily configurable, and does not require users to have prior knowledge of programming, which allows anyone, regardless of background, to use. We also introduce a battery-powered wireless extension module that is suitable for mobile drone applications, where a chord-powered Raspberry Pi is not suitable. We demonstrate the impact our system has on enabling drones with flexible sensing modalities and creating smarter environments by integrating our platform into a variety of intelligent home applications.more » « less