skip to main content

Search for: All records

Creators/Authors contains: "Zhao, Peng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available August 15, 2024
  3. Abstract

    Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.

    more » « less
  4. Abstract

    Elastomers generally possess low Young's modulus and high failure strain, which are widely used in soft robots and intelligent actuators. However, elastomers generally lack diverse functionalities, such as stimulated shape morphing, and a general strategy to implement these functionalities into elastomers is still challenging. Here, a microfluidic 3D droplet printing platform is developed to design composite elastomers architected with arrays of functional droplets. Functional droplets with controlled size, composition, position, and pattern are designed and implemented in the composite elastomers, imparting functional performances to the systems. The composited elastomers are sensitive to stimuli, such as solvent, temperature, and light, and are able to demonstrate multishape (bow‐ and S‐shaped), multimode (gradual and sudden), and multistep (one‐ and two‐step) deformations. Based on the unique properties of droplet‐embedded composite elastomers, a variety of stimuli‐responsive systems are developed, including designable numbers, biomimetic flowers, and soft robots, and a series of functional performances are achieved, presenting a facile platform to impart diverse functionalities into composite elastomers by microfluidic 3D droplet printing.

    more » « less
  5. Abstract

    Strong and tough bio‐based fibers are attractive for both fundamental research and practical applications. In this work, strong and tough hierarchical core–shell fibers with cellulose nanofibrils (CNFs) in the core and regenerated silk fibroins (RSFs) in the shell are designed and prepared, mimicking natural spider silks. CNF/RSF core–shell fibers with precisely controlled morphology are continuously wet‐spun using a co‐axial microfluidic device. Highly‐dense non‐covalent interactions are introduced between negatively‐charged CNFs in the core and positively‐charged RSFs in the shell, diminishing the core/shell interface and forming an integral hierarchical fiber. Meanwhile, shearing by microfluidic channels and post‐stretching induce a better ordering of CNFs in the core and RSFs in the shell, while ordered CNFs and RSFs are more densely packed, thus facilitating the formation of non‐covalent interactions within the fiber matrix. Therefore, CNF/RSF core–shell fibers demonstrate excellent mechanical performances; especially after post‐stretching, their tensile strength, tensile strain, Young's modulus, and toughness are up to 635 MPa, 22.4%, 24.0 GPa, and 110 MJ m−3, respectively. In addition, their mechanical properties are barely compromised even at −40 and 60 °C. Static load and dynamic impact tests suggest that CNF/RSF core–shell fibers are strong and tough, making them suitable for advanced structural materials.

    more » « less
  6. Sorted by the photon fluences of short Gamma-ray Bursts (SGRBs) detected by the Fermi-Gamma Ray Burst Monitor (GBM), nine brightest bursts are selected to perform a comprehensive analysis. All GRB lightcurves are fitted well by 1 to 3 pulses that are modelled by fast-rising exponential decay profile (FRED), within which the resultant rising time is strongly positive-correlated with the full time width at half maxima (FWHM). A photon spectral model involving a cutoff power-law function and a standard blackbody function (CPL + BB) could reproduce the spectral energy distributions of these SGRBs well in the bursting phase. The CPL’s peak energy is found strongly positive-correlated with the BB’s temperature, which indicates they might be from the same physical origin. Possible physical origins are discussed to account for these correlations. 
    more » « less
  7. Abstract We report the detection of a strong thermal component in the short gamma-ray burst 170206A with three intense pulses in its light curves, throughout which the fluxes of this thermal component exhibit fast temporal variability the same as that of the accompanying nonthermal component. The values of the time-resolved low-energy photon index in the nonthermal component are between about −0.79 and −0.16, most of which are harder than the −2/3 expected in the synchrotron emission process. In addition, we found a common evolution between the thermal component and the nonthermal component, E p , CPL ∝ kT BB 0.95 ± 0.28 and F CPL ∝ F BB 0.67 ± 0.18 , where E p,CPL and F CPL are the peak photon energy and corresponding flux of the nonthermal component, and kT BB and F BB are the temperature and corresponding flux of the thermal component, respectively. Finally, we proposed that the photospheric thermal emission and the Comptonization of thermal photons may be responsible for the observational features of GRB 170206A. 
    more » « less
  8. Abstract

    Transition metal alloys are essential for magnetic recording, memory, and new materials-by-design applications. Saturation magnetization in these alloys have previously been measured by conventional techniques, for a limited number of samples with discrete compositions, a laborious and time-consuming effort. Here, we propose a method to construct complete saturation magnetization diagrams for Co–Fe–Ni alloys using scanning Hall probe microscopy (SHPM). A composition gradient was created by the diffusion multiple technique, generating a full combinatorial materials library with an identical thermal history. The composition and crystallographic phases of the alloys were identified by integrated energy dispersive X-ray spectroscopy and electron backscatter diffraction. “Pixel-by-pixel” perpendicular components of the magnetic field were converted into maps of saturation magnetization using the inversion matrix technique. The saturation magnetization dependence for the binary alloys was consistent with the Slater-Pauling behavior. By using a significantly denser data point distribution than previously available, the maximum of the Slater-Pauling curve for the Co–Fe alloys was identified at ~ 32 at% of Co. By mapping the entire ternary diagram of Co–Fe–Ni alloys recorded in a single experiment, we have demonstrated that SHPM—in concert with the combinatorial approach—is a powerful high-throughput characterization tool, providing an effective metrology platform to advance the search for new magnetic materials.

    more » « less
  9. With the growing trend of decarbonization in ground transportation, low and zero-carbon fuels have attracted extensive research interest. Liquid ammonia is a promising alternative fuel due to its relatively high volumetric energy density, mature production and distribution infrastructure, convenience of storage, and zero carbon emissions. However, ammonia combustion also suffers from low flame speed and weak chemical reactivity. In this work, we computationally investigate the suitable engine-relevant thermochemical conditions for auto-ignition of constant volume ammonia spray, as well as its spray dynamics, vaporization, flash boiling effects, and emissions. The simulation is first validated by comparing it against available experimental data from a vaporizing ammonia spray and is then extended to chemically reactive conditions. Results show that ammonia sprays under engine-relevant conditions (60 bar and 1200 K) can only successfully auto-ignite for cases with ambient hydrogen addition, through enhancement of thermal condition and chemical reactivity. A chemical flux analysis is conducted to further understand the important species and reactions that promote ammonia auto-ignition from hydrogen, which potentially can be introduced via H2solubility, exhaust gas recirculation, and onboard ammonia thermal decomposition. Furthermore, results have indicated that charge cooling effects can further decrease the temperature in the flow field and make auto-ignition more difficult. This study provided useful insights for the application of ammonia as a zero-carbon diesel fuel for ground transportation.

    more » « less
  10. null (Ed.)