skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Yibin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. The authors present an algorithm that, given an n-vertex m-edge Eulerian graph with polynomially bounded weights, computes an 𝑂 ~ ( 𝑛 log ⁡ 2 𝑛 ⋅ 𝜀 − 2 ) O ~ (nlog 2 n⋅ε −2 )-edge 𝜀 ε-approximate Eulerian sparsifier with high probability in 𝑂 ~ ( 𝑚 log ⁡ 3 𝑛 ) O ~ (mlog 3 n) time (where 𝑂 ~ ( ⋅ ) O ~ (⋅) hides polyloglog(n) factors). By a reduction from Peng-Song (STOC ’22), this yields an 𝑂 ~ ( 𝑚 log ⁡ 3 𝑛 + 𝑛 log ⁡ 6 𝑛 ) O ~ (mlog 3 n+nlog 6 n)-time algorithm for solving n-vertex m-edge Eulerian Laplacian systems with polynomially bounded weights with high probability, improving on the previous state-of-the-art runtime of Ω ( 𝑚 log ⁡ 8 𝑛 + 𝑛 log ⁡ 23 𝑛 ) Ω(mlog 8 n+nlog 23 n). They also provide a polynomial-time algorithm that computes sparsifiers with 𝑂 ( min ⁡ ( 𝑛 log ⁡ 𝑛 ⋅ 𝜀 − 2 + 𝑛 log ⁡ 5 / 3 𝑛 ⋅ 𝜀 − 4 / 3 , 𝑛 log ⁡ 3 / 2 𝑛 ⋅ 𝜀 − 2 ) ) O(min(nlogn⋅ε −2 +nlog 5/3 n⋅ε −4/3 ,nlog 3/2 n⋅ε −2 )) edges, improving the previous best bounds. Furthermore, they extend their techniques to yield the first 𝑂 ( 𝑚 ⋅ polylog ( 𝑛 ) ) O(m⋅polylog(n))-time algorithm for computing 𝑂 ( 𝑛 𝜀 − 1 ⋅ polylog ( 𝑛 ) ) O(nε −1 ⋅polylog(n))-edge graphical spectral sketches, along with a natural Eulerian generalization. Unlike prior approaches using short cycle or expander decompositions, their algorithms leverage a new effective resistance decomposition scheme, combined with natural sampling and electrical routing for degree balance. The analysis applies asymmetric variance bounds specialized to Eulerian Laplacians and tools from discrepancy theory. 
    more » « less