skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Matter falling into a Schwarzschild-AdS black hole from the left causes increased focussing of ingoing geodesics from the right, and, as a consequence, they reach the singularity sooner. In a standard Penrose diagram, the singularity “bends down”. We show how to detect this feature of the singularity holographically, using a boundary two-point function. We model the matter with a shock wave, and show that this bending down of the singularity can be read off from a novel analytic continuation of the boundary two-point function. Along the way, we obtain a generalization of the recently proposed thermal product formula for two-point correlators. 
    more » « less
  2. A bstract We study charged perturbations of the thermofield double state dual to a charged AdS black hole. We model the perturbation by a massless charged shell in the bulk. Unlike the neutral case, all such shells bounce at a definite radius, which can be behind the horizon. We show that the standard “shock wave” calculation of a scrambling time indicates that adding charge increases the scrambling time. We then give two arguments using the bounce that suggest that scrambling does not actually take longer when charge is added, but instead its onset is delayed. We also construct a boundary four point function which detects whether the shell bounces inside the black hole. 
    more » « less
  3. Two-dimensional (2D) hexagonal boron nitride (h-BN) is one of the few materials showing great promise for light emission in the far ultraviolet (UV)-C wavelength, which is more effective and safer in containing the transmission of microbial diseases than traditional UV light. In this report, we observed that h-BN, despite having an indirect energy bandgap, exhibits a remarkably high room-temperature quantum efficiency (∼60%), which is orders of magnitude higher than that of other indirect bandgap material, and is enabled by strong excitonic effects and efficient exciton-phonon interactions. This study offers a new approach for the design and development of far UV-C optoelectronic devices as well as quantum photonic devices employing 2D semiconductor active regions. 
    more » « less
  4. In late December 1973, the United States enacted what some would come to call “the pitbull of environmental laws.” In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale. With that prospect looming, and with scientific understanding ever changing,Scienceinvited experts to discuss how the ESA has evolved and what its future might hold.—Brad Wible 
    more » « less
  5. In late December 1973, the United States enacted what some would come to call “the pitbull of environmental laws.” In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale. With that prospect looming, and with scientific understanding ever changing, Science invited experts to discuss how the ESA has evolved and what its future might hold. 
    more » « less
  6. A bstract Previous work has explored the connections between three concepts — operator size, complexity, and the bulk radial momentum of an infalling object — in the context of JT gravity and the SYK model. In this paper we investigate the higher dimensional generalizations of these connections. We use a toy model to study the growth of an operator when perturbing the vacuum of a CFT. From circuit analysis we relate the operator growth to the rate of increase of complexity and check it by complexity-volume duality. We further give an empirical formula relating complexity and the bulk radial momentum that works from the time that the perturbation just comes in from the cutoff boundary, to after the scrambling time. 
    more » « less
  7. null (Ed.)